Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2918 word(s) 2918 2021-02-26 04:30:33 |
2 format correction -6 word(s) 2912 2021-02-27 13:28:19 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Vlasova-St. Louis, I. Cryptococcal Immune Reconstitution Inflammatory Syndrome. Encyclopedia. Available online: (accessed on 20 April 2024).
Vlasova-St. Louis I. Cryptococcal Immune Reconstitution Inflammatory Syndrome. Encyclopedia. Available at: Accessed April 20, 2024.
Vlasova-St. Louis, Irina. "Cryptococcal Immune Reconstitution Inflammatory Syndrome" Encyclopedia, (accessed April 20, 2024).
Vlasova-St. Louis, I. (2021, February 26). Cryptococcal Immune Reconstitution Inflammatory Syndrome. In Encyclopedia.
Vlasova-St. Louis, Irina. "Cryptococcal Immune Reconstitution Inflammatory Syndrome." Encyclopedia. Web. 26 February, 2021.
Cryptococcal Immune Reconstitution Inflammatory Syndrome

Immune reconstitution inflammatory syndrome (IRIS) presents as an exaggerated immune reaction that occurs during dysregulated immune restoration in immunocompromised patients in late-stage human immunodeficiency virus (HIV) infection who have commenced antiretroviral treatments (ART). Virtually any opportunistic pathogen can provoke this type of immune restoration disorder.

immune reconstitution inflammatory syndrome (IRIS) AIDS/HIV antiretroviral therapy (ART) cryptococcal meningitis (CM) blood biomarkers cerebrospinal fluid biomarkers

1. Introduction

Cryptococcus species are the most common cause of meningitis in adults and one of the leading causes of human immunodeficiency virus (HIV)-related mortality in the world, with a global incidence estimated at 223,100 cases per year [1][2]. In countries with limited resources, cryptococcosis drives up to 40% of all hospitalizations and deaths associated with the advanced stage of HIV infection [3][4][5]. Immune reconstitution inflammatory syndrome associated with cryptococcosis (C-IRIS) is a common complication that manifests after the initiation of antiretroviral therapy (ART) [6][7]. Cryptococcal IRIS presents as an exaggerated and deregulated proinflammatory immune reaction, which accompanies the reduction in peripheral blood HIV viral load and the initiation of CD4+ T cell recovery [7]. Approximately 25% of HIV and Cryptococcus co-infected patients develop cryptococcal meningitis IRIS (CM-IRIS) within the first four months of ART treatment, with an average mortality rate of around 20 +/− 10% [8].

There are two recognized forms of CM-IRIS. The first form is “unmasking” IRIS, in which the individual manifests an inflammatory response to Cryptococcus spp., revealing previously undiagnosed cryptococcal meningitis (CM) in ART-naïve individuals after starting ART [7][9]. Unmasking CM-IRIS may include neurological symptoms driven by high intracranial pressure and inflammation, such as severe headaches, vomiting, visual impairment (diplopia, photophobia, blindness), hearing loss, seizures, ataxia, or aphasia [10][11][12]. Altered mental status, including personality and behavioral changes, confusion, hallucinations, and in rare cases, lethargy, are attributable to unmasking CM-IRIS. Unmasking IRIS is usually diagnosed within 2 to 6 weeks on antiretroviral treatment and it is the deadliest [13]. Thus, the diagnosis of cryptococcal infection is essential for the prevention of unmasking CM-IRIS. The second form is “paradoxical” IRIS, which occurs in the settings of induction antifungal therapy [6][14]. Paradoxical CM-IRIS became the most common due to significant improvements in the diagnosis of cryptococcal meningitis and the introduction of antifungal therapy regimens prior to ART commencement [6][15]. The paradoxical form also presents itself as neuro-cryptococcosis, with clinical symptoms of worsening neurological function impairments and altered mental status due to raised intracranial/cerebrospinal fluid (CSF) pressure. Paradoxical CM-IRIS can be clinically assessed according to Glasgow Coma Scores (GCS > 15) and via MRI imaging findings (e.g., multifocal or diffuse leptomeningeal and cortical enhancements) [14][16][17][18]. Paradoxical C-IRIS manifests, on average, 1 to 6 months after the initiation of ART, and it occurs in the background of initial clinical and microbiological response to antifungal treatment, as well as virologic response to ART [2][14][19]. As described below, periodic examination of cerebrospinal fluid was found to be helpful to diagnose and predict paradoxical CM-IRIS [20].

Pulmonary C-IRIS has been described primarily in Cryptococcus neoformans infection. Clinical manifestations include cough, dyspnea due to pneumonitis, pulmonary infiltrates, lymphadenopathy, cavitation, and nodular lesions [9][21][22]. Several components of the immune system such as T cells and macrophages, pro-inflammatory cytokines and chemokines are thought to be involved in the pathology of pulmonary C-IRIS, although they have not been systematically studied (reviewed in [23]).

2. Conventional Risk Factors for CM-IRIS

The conventional risk factors of CM-IRIS can be divided into three categories.

2.1. Host-Related Risk Factors

Because the variety of opportunistic pathogens has been linked to ART-associated IRIS in people with acquired immunodeficiency syndrome (AIDS), host-related risk factors are considered most important and universal for several types of IRIS [24]. Improvements in immune status in patients who have been severely immunocompromised are often accompanied by disbalanced immune reconstitution, which represents a host risk factor for the development of IRIS. Patients, as such, have very low pre-ART CD4+ T cell count in the blood (<100 CD4+ cells/uL) [25][26] and high HIV viral load (>100,000 copies/mL of blood) [27]. They include low baseline antibody responses to Cryptococcus spp., e.g., decreased levels of total plasma IgM and specific antifungal IgM (GXM-IgM or β-glucan-binding IgM) [28], and a lack of pro-inflammatory cytokines in the serum, or CSF, as described below. Genetic factors, such as single nucleotide polymorphism Interleukin 7 receptor subunit alpha (IL7RA), may affect predisposition in the development of IRIS [29]. Allelic polymorphisms (e.g., in CYP2C19 gene) may be considered as patient-specific risk factors affecting fungicidal drug activities, toxicity, and the level of inflammation (e.g., C-reactive protein or albumin levels) [30]. More recently, transcriptomic profiles have been assessed, and several molecular pathways were proposed (as potential baseline biomarkers), as described below [31]. Among readily available baseline biomarkers, low hemoglobin concentrations (<8.5 g/dL), high C-reactive protein levels (CRP > 32 mg/L) or D-dimers (>3.89 ug/mL) are predictive of IRIS events [8][15].

2.2. Pathogen-Related Risk Factors

The genomic differences in clinical isolates may underlay differential drug susceptibility and virulence of Cryptococcal spps., which play important roles in the severity of CM and CM-IRIS [32]. Genetic make-up allowed some Cryptococcal spps. advantaged metabolic fitness, as was tested in pre-clinical models [33][34][35]. Mutated species of HIV may also play roles in the pre-treatment drug resistance to non-nucleoside reverse transcriptase inhibitors ART, and in alterations of immune responses after ART initiation [36].

In recent years, there has been an international collaborative effort focused on the development of point-of-care assays in resource-limited laboratory settings [37][38]. The lateral flow assay (LFA, IMMY® diagnostics, Norman, OK, USA) utilizes gold-conjugated monoclonal antibodies that target capsular polysaccharide glucuronoxylomannan (GXM), a primary cryptococcal antigen of four serotypes [39]. LFA is fast and able to quantify cryptococcal antigen (CrAg) titers with high sensitivity and specificity in CSF: 100% and 99.8%, respectively (reviewed in [40]). Cryptococcal antigenemia (CrAg+) in serum, CSF or other biofluids is often detected in asymptomatic CM patients who subsequently develop CM-IRIS [41][42][43][44]. Mortality also remains higher in CrAg+ immunocompromised patients after initiation of ART, and the levels of CD4+ T cells are inversely correlated with CrAg titers [45][46]. The FDA-approved BioFire FilmArray® meningitis/encephalitis nested multiplex PCR panel (bioMérieux, Salt Lake City, UT, USA) has recently been introduced into routine clinical practice, and it can detect and differentiate DNA from C. neoformans and C. gattii (among other pathogens) [47].

With the development of highly sensitive and specific molecular tests, great advances have been made in the diagnostic procedures of CM caused by various Cryptococcal species. Isothermal molecular techniques, such as LAMP (Loop-mediated isothermal AMPlification), have also contributed to improving the diagnosis of fungal diseases. The LAMP technique is based on the principle of isothermal loop amplification to identify the species of Cryptococci from the CSF culture isolates targeting the internal transcribed spacer (ITS) region and CAP59 gene. The LAMP assay has high specificity for molecular genotypes VNI, VNII, and VNIII of Cryptococcus neoformans, and is able to differentiate from C. gattii and other fungal species [48]. LAMP does not require expensive laboratory instrumentation to perform, thus in the future it can be introduced as a point-of-care assay.

Culture remains a gold standard to assess live pathogens in the CSF or blood, by measuring colony-forming units (CFU/mL) growth on Sabouraud dextrose agar for 48 h at 30 °C. An important prognostic parameter, such as early fungicidal activity (EFA), can be calculated from recurrent cultures during induction regimens (described below). Microbiological clearance is measured as log10 clearance of Cryptococcus yeasts per mL of CSF and serves as an important predictor of increased mortality, including that from C-IRIS [49]. Cultured isolates can subsequently be serotyped by real-time PCR assay, and mating type can be determined by amplified fragment length polymorphism (AFLP) or PCR-restriction fragment length polymorphism (PCR-RFLP) [34][50]. Molecular typing revealed that genotypes, drug susceptibility, and the virulence of Cryptococcus species varied between different continents and in different countries [51]. However, recent studies found no correlation between antifungal drug susceptibility and hazards of death for therapeutic outcomes in the cohort of severely immunosuppressed AIDS patients [52].

2.3. Treatment-Related Risk Factors

Inadequacy of high-dose antifungal drug monotherapy or combination therapy is the number one treatment-related factor for IRIS, as mortality from CM is the highest during the first 6 months under routine protocols [53][54]. A combination of various antifungal regimens has been tested and compared in the procurement of the best antifungal activity in the shortest period of time [55][56]. However, a shorter duration between induction antifungal treatment and the initiation of ART may predispose patients to fatal C-IRIS events. The proposed explanation is an insignificant time for the achievement of microbiological clearance [54][57].

A combination of highly active antiretroviral drugs seems to have immunomodulatory effects, yet in some cases increases IRIS incidence, depending upon patient-specific factors [58]. The rapid decrease in HIV viral load on ART (>2.5 log reduction in IRIS patients, over 4 weeks, when compared to pre-ART viral load) has also been identified as a risk factor for activation of the host immune system and IRIS [27][59][60]. On the other hand, the interruption of ART or development of ART resistance slows down the immune reconstitution and prolongs chronic inflammation [61][62]. After ART initiation, confirmation of the virologic response is highly recommended for the diagnosis of treatment failure or suboptimum responses to combination ART, but it is not essential for the prediction of IRIS [63][64]].

Thus, rapid cellular immune activation that drives the symptoms of CM-IRIS is predicated by a combination of several factors, such as the hosts’ immunological predisposition, the microbial antigen burden, and the effectiveness of the drugs (ART or antifungals).

3. Immunopathogenesis of C-IRIS

Human immunodeficiency virus infects and persists in CD4+ T cells, astrocytes, microglial cells, and less frequently, in cells of monocyte-macrophage lineage [65][66]. During the first few weeks on ART, the rate of HIV viral load decreases and T cell population stabilizes; however, the recovery initiates very slowly in severely immunodeficient individuals. The initiation of ART at the advanced stage of HIV infection (at CD4+ T cells ≤ 200/mm3) is associated with long-term immune and metabolic abnormalities (up to 3 years after ART initiation) [67]. In fact, the thymic output of naïve CD4+ T cells (detected as T cell receptor excision circles (TRECs)) exhibits an augmenting trend only after 12 months on ART in adults and young children [68][69]. Pre- and post-ART, CD4+, and CD8+ T cells express immune checkpoint molecules (e.g., PD-1, TIGIT, and LAG-3), which are associated with long-term HIV persistence and immune exhaustion [70]. During IRIS episodes, higher frequencies of PD-1+/CD4+ T cells expressing LAG-3, CTLA-4, and ICOS have also been detected when compared with patients without IRIS [71]. HIV-AIDS patients, who subsequently die from CM-IRIS or CM after ART initiation, also exhibit upregulation of immune checkpoint gene expression (PD-1, PDL-1) in peripheral blood at the time of ART (Vlasova-St. Louis, unpublished). The persistence of expression of immune checkpoint molecules and T cell immune exhaustion correlates with the increased size of the HIV reservoir, which seems to play an important role in the subsequent ART-driven activation of cytotoxic CD8+ T cells and antigen-presenting cells [72][73]. This may lead to unproductive and paradoxical immune reactions to a reservoir of antigens, secretion of pro-inflammatory mediators by activated monocytes and macrophages, and tissue damage [74]. Thus, the transition from the state of immune exhaustion and poor macrophage function to ART-related immune reconstitution is often accompanied by exaggerated innate inflammatory responses which lead to IRIS.

4. Treatment Advances for the Management of Cryptococcal Infection and C-IRIS

With respect to therapies, there are still no effective treatments for C-IRIS; however, targeting the risk factors described in 2.2 may decrease IRIS incidence and severity. The CM treatment regimens are composed of three pharmaceuticals: amphotericin B deoxycholate (AmB) or liposomal AmB (L-Amb), flucytosine (5-FC), and fluconazole (FLU) (Table 1). The treatment of CM is divided into three phases: induction, consolidation, and maintenance (reviewed in [75]).

Table 1. Treatment advances for the management of cryptococcal infection with antifungal drugs.




Amphotericin B deoxycholate (AmB), 1 mg/Kg/day

Hepatic and renal toxicity

Side effects: Anemia

Electrolytic abnormalities

Reactions at the site of infusion

Lawrence et al., 2018 [76]

Molloy et al., 2018 [77]

Molefi et al., 2015 [78]

Liposomal AmB (L-AmB)

10 mg/Kg

Less toxic

Single dose administration

Longer half-life

More effectively penetrates the brain tissues

Lawrence et al., 2018 [76]

Molloy et al., 2018 [77]

Molefi et al., 2015 [78]

Encochleated amphotericin B deoxycholate (cAMB)

1–2 g per day

In test-EnACT Trial

Skipper et al., 2020 [79]

Flucytosine (5-FC)

50–150 mg/kg/day

Provides most effective fungicidal activity when combined with AmB

Concha-Velasco et al., 2017 [80]

Voriconazole (VCZ)

400 mg/day

Good bioavailability

Higher cost

No statistically significant differences between VCZ and AMB/FLU or AmB/5-FC

Loyse et al., 2012 [81]

Li et al., 2016 [82]

Zeng et al., 2020 [83]




Used as a second-line agent

in combination with AmB

Exhibit drug–drug interactions and toxicity

Wong et al., 2020 [84]

Jørgensen et al., 2019 [85]

Houšť et al., 2020 [86]


Highly selective for fungal CYP51

Minimal effect on human cytochrome P450

Lockhart et al., 2016 [87]

Nielsen et al., 2017 [88]

Fluconazole (FLU)

200 mg/day

Maintenance phase of CM treatment

Quan et al., 2019 [89]

Bongomin et al., 2018 [90]

The induction phase aims to drastically decrease the fungal burden in the patient’s cerebrospinal fluid in the first 2 weeks and is fundamental for survival. AmB has high toxicity at standard doses of 1 mg/kg/day, such as hepatic and renal toxicity, anemia, electrolytic abnormalities, or reactions at the site of infusion. For this reason, a recent formulation of liposomal amphotericin B (L-AMB) has been recommended as it is less toxic at a single dose (10 mg/kg), has a longer half-life, and can more effectively penetrate the brain tissues [76][77][78]. Presently, the combination AmB/5-FC provides the most effective fungicidal activity and cryptococcal clearance [80]. A novel formulation of oral AmB is currently being tested for safety and tolerability in the EnACT Trial [79].

Voriconazole (VCZ) is an antifungal agent that is used to treat invasive fungal infections, such as cryptococcosis, aspergillosis, and candidiasis. A study conducted in South Africa assessed its efficacy in treating CM and showed no statistically significant difference between the use of AmB/FLU or AmB/voriconazole and the standard AmB/5-FC therapy [81][82]. VCZ has good bioavailability, but owing to a higher cost, scarcity of studies on CNS penetration, and altered pharmacokinetics in the context of inflammation, its use is limited [83]. Although other triazoles such as itraconazole, posaconazole, and prodrug isavuconazole [84][85] exhibit anticryptococcal activity, they are only used as a second-line agent or in combination with AmB due to drug–drug interactions and toxicity (reviewed in [86]).

In the consolidation phase (2–6 weeks of induction therapy), doses of antifungal agents are decreased, and antiretroviral therapy is initiated. The initiation of the consolidation phase and ART must be considered carefully [91]. The introduction of ART is recommended 4–6 weeks after starting induction antifungal therapy to improve survival rates and achieve sustained clinical responses [92]. A pragmatic approach to the management of patients with HIV-associated cryptococcal meningitis has been outlined in a recent study [93]. Recently, a new tetrazole compound, VT-1129 (Viamet Pharmaceuticals Inc.), has been shown to exhibit potent in vitro activity against Cryptococcus spp. [87]. VT-1129 is highly selective for fungal CYP51, has minimal effect on human cytochrome P450 enzyme metabolism, and may potentially be used as a preemptive or consolidation therapy for fluconazole-resistant cryptococcal meningitis [88].

The maintenance phase is introduced to maintain the sterility of CSF culture and to prevent a relapse of cryptococcal disease. The fluconazole maintenance therapy (200 mg/day) is extremely important; however, this phase is the most vulnerable to non-compliance and loss to follow-up [89][90].

There are three main approaches to combat C-IRIS: supportive care aiming to reduce host-related risk factors), symptomatic treatment of high intracranial pressure in cases of CM-IRIS, and anti-inflammatory or immunomodulatory approaches to diminish inflammation.

The symptoms of paradoxical CM-IRIS are accompanied by abnormal radiographic imaging findings and high intracranial pressure (>250 mm H2O) [14]. Thus, as a symptomatic treatment, therapeutic lumbar punctures and, in some cases, shunting are recommended for those suspected of CM-IRIS [94][95]. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the cases of mild and self-contained forms of CM-IRIS. In cases of severe symptoms of CM-IRIS, the administration of corticosteroids (particularly dexamethasone) has been found to be beneficial as it decreases inflammation, although it has also been shown to be associated with higher mortality [96][97][98]. In cases of pulmonary cryptococcal IRIS, corticosteroid treatment may be considered in the event of the development of respiratory distress, but the antifungal regimens should be continued [87][88]. The immunosuppressive drug hydroxychloroquine reduces lipopolysaccharide/TLR-mediated immune signaling, which may be important for CM-IRIS prevention, as early CM-IRIS is solely driven by innate immune activation pathways, especially in immunological non-responders (patients with CD4+ T cell increase of <5% in the last 12 months on ART) [99] (Table 4).

Table 4. Treatment advances for the management of CM-IRIS with anti-inflammatory agents and biologics.

Other immunomodulatory agents (such as thalidomide or adalimumab) have been tested in severe cases of CM-IRIS. Several reports documented neurological improvement after the use of thalidomide and adalimumab—human monoclonal antibodies that bind to TNFα and block its anti-inflammatory activity [100][101]. Another biologic, a recombinant IFNγ, has been shown to expedite CSF fungal clearance by increasing Th1 cell responses and depolarizing macrophages, although it has failed to exhibit evident benefits to patient survival [102][103]. In all cases of C-IRIS, ART should be continued unless there is a risk of fatal outcomes [104][105] (Table 4).


  1. World Health Organization. Cryptococcal Disease: What’s New and Important. Available online: (accessed on 12 July 2020).
  2. Williamson, P.R.; Jarvis, J.N.; Panackal, A.A.; Fisher, M.C.; Molloy, S.F.; Loyse, A.; Harrison, T.S. Cryptococcal meningitis: Epidemiology, immunology, diagnosis and therapy. Nat. Rev. Neurol. 2016, 13, 13–24.
  3. Liu, P.; Dillingham, R.; McManus, K.A. Hospital days attributable to immune reconstitution inflammatory syndrome in persons living with HIV before and after the 2012 DHHS HIV guidelines. AIDS Res. Ther. 2017, 14, 25.
  4. Tenforde, M.W.; Gertz, A.M.; Lawrence, D.S.; Wills, N.K.; Guthrie, B.L.; Farquhar, C.; Jarvis, J.N. Mortality from HIV-associated meningitis in sub-Saharan Africa: A systematic review and meta-analysis. J. Int. AIDS Soc. 2020, 23.
  5. Hoyo-Ulloa, I.; Belaunzarán-Zamudio, P.F.; Crabtree-Ramirez, B.; Galindo-Fraga, A.; Pérez-Aguinaga, M.E.; Sierra-Madero, J.G. Impact of the immune reconstitution inflammatory syndrome (IRIS) on mortality and morbidity in HIV-infected patients in Mexico. Int. J. Infect. Dis. 2011.
  6. Gaillet, A.; Calin, R.; Imbert, S.; Ollivier, M.; Guillot, H.; Fekkar, A.; Pourcher, V. Distinct paradoxical inflammatory reaction followed by postantiretroviral therapy immune reconstitution syndrome in cryptococcal meningitis. AIDS 2018, 32, 2434–2436.
  7. Le, L.T.; Spudich, S.S. HIV-Associated Neurologic Disorders and Central Nervous System Opportunistic Infections in HIV. Semin. Neurol. 2016.
  8. Sereti, I.; Sheikh, V.; Shaffer, D.; Phanuphak, N.; Gabriel, E.; Wang, J.; Nason, M.C.; Roby, G.; Ngeno, H.; Kirui, F.; et al. Prospective International Study of Incidence and Predictors of Immune Reconstitution Inflammatory Syndrome and Death in People Living With Human Immunodeficiency Virus and Severe Lymphopenia. Clin. Infect. Dis. 2020, 71, 652–660.
  9. Haddow, L.J.; Colebunders, R.; Meintjes, G.; Lawn, S.D.; Elliott, J.H.; Manabe, Y.C.; Bohjanen, P.R.; Sungkanuparph, S.; Easterbrook, P.J.; French, M.A.; et al. Cryptococcal immune reconstitution inflammatory syndrome in HIV-1-infected individuals: Proposed clinical case definitions. Lancet Infect. Dis. 2010, 10, 791–802.
  10. Dellière, S.; Guery, R.; Candon, S.; Rammaert, B.; Aguilar, C.; Lanternier, F.; Chatenoud, L.; Lortholary, O. Understanding pathogenesis and care challenges of immune reconstitution inflammatory syndrome in fungal infections. J. Fungi 2018, 4, 139.
  11. Dhasmana, D.J.; Dheda, K.; Ravn, P.; Wilkinson, R.J.; Meintjes, G. Immune Reconstitution Inflammatory Syndrome in HIV-Infected Patients Receiving Antiretroviral Therapy. Drugs 2008, 68, 191–208.
  12. Martinez-Zapico, A.; Asensi, V.; Fuentes, N.; Fonollá, M.; Rodriguez, M.; Cárcaba, V.; Carton, J.A. Immune reconstitution inflammatory syndrome-unmasking endophthalmic, lymphadenopathic, and neuromeningeal cryptococcosis in an HIV-infected patient starting highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses 2014.
  13. Rhein, J.; Hullsiek, K.H.; Evans, E.E.; Tugume, L.; Nuwagira, E.; Ssebambulidde, K.; Kiggundu, R.; Mpoza, E.; Musubire, A.K.; Bangdiwala, A.S.; et al. Detrimental Outcomes of Unmasking Cryptococcal Meningitis with Recent ART Initiation. Open Forum Infect. Dis. 2018, 5.
  14. Wu, G.; Guo, X.; Wang, Y.; Hu, Z. Clinical and Radiographic Features of Cryptococcal Neoformans Meningitis-associated Immune Reconstitution Inflammatory Syndrome. Sci. Rep. 2020, 10, 9948.
  15. Yan, S.; Chen, L.; Wu, W.; Li, Z.; Fu, Z.; Zhang, H.; Xue, J.; Hu, Y.; Mou, J.; Fu, C. Paradoxical immune reconstitution inflammatory syndrome associated with cryptococcal meningitis in China: A 5-year retrospective cohort study. Clin. Microbiol. Infect. 2015.
  16. Da Silva, A.O.F.; Goldani, L.Z. Neuroimaging Features of Immune Reconstitution Inflammatory Syndrome in a Patient with AIDS Successfully Treated for Neurocryptococcosis. Case Rep. Radiol. 2013.
  17. Pettersen, K.D.; Pappas, P.G.; Chin-Hong, P.; Baxi, S.M. A paradoxical decline: Intracranial lesions in two HIV-positive patients recovering from cryptococcal meningitis. BMJ Case Rep. 2015.
  18. Katchanov, J.; Branding, G.; Jefferys, L.; Arastéh, K.; Stocker, H.; Siebert, E. Neuroimaging of HIV-associated cryptococcal meningitis: Comparison of magnetic resonance imaging findings in patients with and without immune reconstitution. Int. J. STD AIDS 2016.
  19. Nunnari, G.; Gussi, M.; Pinzone, M.R.; Martellotta, F.; Cosentino, S.; Cacopardo, B.; Celesia, B.M. Cryptococcal meningitis in an HIV-1-infected person: Relapses or IRIS? Case report and review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2013.
  20. Kalinoski, T.; Malenfant, J.; Yim, C.; Jeng, A. Case report: A case of severe cryptococcal immune reconstitution inflammatory syndrome presenting with brain and intradural abscesses in an HIV patient. Am. J. Trop. Med. Hyg. 2020.
  21. Hu, Z.; Xu, C.; Liu, D.; Meng, F.; Chi, Y.; Chen, W. Pulmonary cryptococcal immune reconstitution syndrome in a person living with HIV: A case report. Int. J. STD AIDS 2020, 31, 280–284.
  22. Lortholary, O.; Fontanet, A.; Mémain, N.; Martin, A.; Sitbon, K.; Dromer, F. Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIV-associated cryptococcosis in France. AIDS 2005, 19, 1043–1049.
  23. Gopal, R.; Rapaka, R.R.; Kolls, J.K. Immune reconstitution inflammatory syndrome associated with pulmonary pathogens. Eur. Respir. Rev. 2017, 26, 160042.
  24. Haddow, L.J.; Moosa, M.Y.S.; Mosam, A.; Moodley, P.; Parboosing, R.; Easterbrook, P.J. Incidence, Clinical Spectrum, Risk Factors and Impact of HIV-Associated Immune Reconstitution Inflammatory Syndrome in South Africa. PLoS ONE 2012, 7, e40623.
  25. Egger, M. Immunodeficiency at the start of combination antiretroviral therapy in low-, middle-, and high-income countries. J. Acquir. Immune Defic. Syndr. 2014.
  26. Koller, M.; Patel, K.; Chi, B.C.; Wools-Kaloustian, K.; Dicko, F.; Chokephaibulkit, K.; Chimbetete, C.; Avila, D.; Hazra, R.; Ayaya, S.; et al. Immunodeficiency in children starting antiretroviral therapy in low-, middle-, and high-income countries. J. Acquir. Immune Defic. Syndr. 2015.
  27. Dutertre, M.; Cuzin, L.; Demonchy, E.; Puglièse, P.; Joly, V.; Valantin, M.A.; Cotte, L.; Huleux, T.; Delobel, P.; Martin-Blondel, G. Initiation of antiretroviral therapy containing integrase inhibitors increases the risk of IRIS requiring hospitalization. J. Acquir. Immune Defic. Syndr. 2017, 76, e23–e26.
  28. Yoon, H.A.; Nakouzi, A.; Chang, C.C.; Kuniholm, M.H.; Carreño, L.J.; Wang, T.; Ndung’u, T.; Lewin, S.R.; French, M.A.; Pirofski, L.A. Association Between Plasma Antibody Responses and Risk for Cryptococcus-Associated Immune Reconstitution Inflammatory Syndrome. J. Infect. Dis. 2019, 219, 420–428.
  29. Resino, S.; Navarrete-Muñoz, M.A.; Blanco, J.; Pacheco, Y.M.; Castro, I.; Berenguer, J.; Santos, J.; Vera-Méndez, F.J.; Górgolas, M.; Jiménez-Sousa, M.A.Á.; et al. Il7ra rs6897932 polymorphism is associated with better cd4+ T-cell recovery in HIV infected patients starting combination antiretroviral therapy. Biomolecules 2019, 9, 233.
  30. Dote, S.; Sawai, M.; Nozaki, A.; Naruhashi, K.; Kobayashi, Y.; Nakanishi, H. A retrospective analysis of patient-specific factors on voriconazole clearance. J. Pharm. Health Care Sci. 2016, 2, 4–9.
  31. Vlasova-St. Louis, I.; Chang, C.C.; Shahid, S.; French, M.A.; Bohjanen, P.R. Transcriptomic predictors of paradoxical cryptococcosis-associated immune reconstitution inflammatory syndrome. Open Forum Infect. Dis. 2018, 5, ofy157.
  32. Gerstein, A.C.; Jackson, K.M.; McDonald, T.R.; Wang, Y.; Lueck, B.D.; Bohjanen, S.; Smith, K.D.; Akampurira, A.; Meya, D.B.; Xue, C.; et al. Identification of pathogen genomic differences that impact human immune response and disease during cryptococcus neoformans infection. MBio 2019.
  33. Herkert, P.F.; Hagen, F.; de Oliveira Salvador, G.L.; Gomes, R.R.; Ferreira, M.S.; Vicente, V.A.; Muro, M.D.; Pinheiro, R.L.; Meis, J.F.; Queiroz-Telles, F. Molecular characterisation and antifungal susceptibility of clinical Cryptococcus deuterogattii (AFLP6/VGII) isolates from Southern Brazil. Eur. J. Clin. Microbiol. Infect. Dis. 2016.
  34. Grizante Barião, P.H.; Tonani, L.; Cocio, T.A.; Martinez, R.; Nascimento, É.; von Zeska Kress, M.R. Molecular typing, in vitro susceptibility and virulence of Cryptococcus neoformans/Cryptococcus gattii species complex clinical isolates from south-eastern Brazil. Mycoses 2020.
  35. Lev, S.; Li, C.; Desmarini, D.; Liuwantara, D.; Sorrell, T.C.; Hawthorne, W.J.; Djordjevic, J.T. Monitoring glycolysis and respiration highlights metabolic inflexibility of cryptococcus neoformans. Pathogens 2020, 9, 684.
  36. Beck, I.A.; Levine, M.; McGrath, C.J.; Bii, S.; Milne, R.S.; Kingoo, J.M.; So, I.; Andersen, N.; Dross, S.; Coombs, R.W.; et al. Pre-treatment HIV-drug resistance associated with virologic outcome of first-line NNRTI-antiretroviral therapy: A cohort study in Kenya. EClinicalMedicine 2020.
  37. Pullen, M.F.; Kakooza, F.; Nalintya, E.; Kiragga, A.N.; Morawski, B.M.; Rajasingham, R.; Mubiru, A.; Manabe, Y.C.; Kaplan, J.E.; Meya, D.B.; et al. Change in Plasma Cryptococcal Antigen Titer Is Not Associated with Survival Among Human Immunodeficiency Virus–infected Persons Receiving Preemptive Therapy for Asymptomatic Cryptococcal Antigenemia. Clin. Infect. Dis. 2020, 70, 353–355.
  38. Rajasingham, R.; Wake, R.M.; Beyene, T.; Katende, A.; Letang, E.; Boulware, D.R. Cryptococcal Meningitis Diagnostics and Screening in the Era of Point-of-Care Laboratory Testing. J. Clin. Microbiol. 2018, 57, e01238-18.
  39. Hansen, J.; Slechta, E.S.; Gates-Hollingsworth, M.A.; Neary, B.; Barker, A.P.; Bauman, S.; Kozel, T.R.; Hanson, K.E. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin. Vaccine Immunol. 2013.
  40. Anjum, S.; Williamson, P.R. Clinical Aspects of Immune Damage in Cryptococcosis. Curr. Fungal Infect. Rep. 2019.
  41. Wake, R.M.; Britz, E.; Sriruttan, C.; Rukasha, I.; Omar, T.; Spencer, D.C.; Nel, J.S.; Mashamaite, S.; Adelekan, A.; Chiller, T.M.; et al. High cryptococcal antigen titers in blood are predictive of subclinical cryptococcal meningitis among human immunodeficiency virus-infected patients. Clin. Infect. Dis. 2018.
  42. Longley, N.; Jarvis, J.N.; Meintjes, G.; Boulle, A.; Cross, A.; Kelly, N.; Govender, N.P.; Bekker, L.G.; Wood, R.; Harrison, T.S. Cryptococcal Antigen Screening in Patients Initiating ART in South Africa: A Prospective Cohort Study. Clin. Infect. Dis. 2016, 62, 581–587.
  43. Mamuye, A.T.; Bornstein, E.; Temesgen, O.; Blumberg, H.M.; Kempker, R.R. Point-of-care testing for cryptococcal disease among hospitalized human immunodeficiency virus-infected adults in Ethiopia. Am. J. Trop. Med. Hyg. 2016.
  44. Xie, L.M.; Lin, G.L.; Dong, H.N.; Liao, Y.X.; Liu, Y.L.; Qin, J.F.; Guo, X.G. Evaluation of lateral flow immunochromatographic assay for diagnostic accuracy of cryptococcosis. BMC Infect. Dis. 2020.
  45. Wake, R.M.; Govender, N.P.; Omar, T.; Nel, C.; Mazanderani, A.H.; Karat, A.S.; Ismail, N.A.; Tiemessen, C.T.; Jarvis, J.N.; Harrison, T.S. Cryptococcal-related Mortality Despite Fluconazole Preemptive Treatment in a Cryptococcal Antigen Screen-and-Treat Program. Clin. Infect. Dis. 2020.
  46. Rajasingham, R.; Meya, D.B.; Greene, G.S.; Jordan, A.; Nakawuka, M.; Chiller, T.M.; Boulware, D.R.; Larson, B.A. Evaluation of a national cryptococcal antigen screening program for HIV-infected patients in Uganda: A cost-effectiveness modeling analysis. PLoS ONE 2019, 14, e0210105.
  47. Liesman, R.M.; Strasburg, A.P.; Heitman, A.K.; Theel, E.S.; Patel, R.; Binnicker, M.J. Evaluation of a commercial multiplex molecular panel for diagnosis of infectious meningitis and encephalitis. J. Clin. Microbiol. 2018.
  48. Stivanelli, P.; Tararam, C.A.; Trabasso, P.; Levy, L.O.; Melhem, M.S.C.; Schreiber, A.Z.; Moretti, M.L. Visible DNA microarray and loop-mediated isothermal amplification (LAMP) for the identification of Cryptococcus species recovered from culture medium and cerebrospinal fluid of patients with meningitis. Brazilian J. Med. Biol. Res. 2020, 53.
  49. Pullen, M.F.; Hullsiek, K.H.; Rhein, J.; Musubire, A.K.; Tugume, L.; Nuwagira, E.; Abassi, M.; Ssebambulidde, K.; Mpoza, E.; Kiggundu, R.; et al. Cerebrospinal Fluid Early Fungicidal Activity as a Surrogate Endpoint for Cryptococcal Meningitis Survival in Clinical Trials. Clin. Infect. Dis. 2020.
  50. Hagen, F.; Hare Jensen, R.; Meis, J.F.; Arendrup, M.C. Molecular epidemiology and in vitro antifungal susceptibility testing of 108 clinical Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato isolates from Denmark. Mycoses 2016.
  51. Prakash, A.; Sundar, G.; Sharma, B.; Hagen, F.; Meis, J.F.; Chowdhary, A. Genotypic diversity in clinical and environmental isolates of Cryptococcus neoformans from India using multilocus microsatellite and multilocus sequence typing. Mycoses 2020.
  52. O’Connor, L.; Van Anh, D.; Chau, T.T.H.; Chau, N.V.V.; Huong, L.N.P.; Wolbers, M.; Day, J.N. Antifungal susceptibility does not correlate with fungal clearance or survival in AIDS-associated cryptococcal meningitis. Clin. Infect. Dis. 2020.
  53. Kitonsa, J.; Mayanja, Y.; Aling, E.; Kiwanuka, J.; Namutundu, J.; Anywaine, Z.; Ggayi, A.B.; Kibengo, F.; Kiwanuka, N.; Kaleebu, P. Factors affecting mortality among HIV positive patients two years after completing recommended therapy for Cryptococcal meningitis in Uganda. PLoS ONE 2019, 14, e0210287.
  54. Beyene, T.; Zewde, A.G.; Balcha, A.; Hirpo, B.; Yitbarik, T.; Gebissa, T.; Rajasingham, R.; Boulware, D.R. Inadequacy of High-Dose Fluconazole Monotherapy among Cerebrospinal Fluid Cryptococcal Antigen (CrAg)-Positive Human Immunodeficiency Virus-Infected Persons in an Ethiopian CrAg Screening Program. Clin. Infect. Dis. 2017.
  55. Boyer-Chammard, T.; Temfack, E.; Alanio, A.; Jarvis, J.N.; Harrison, T.S.; Lortholary, O. Recent advances in managing HIV-associated cryptococcal meningitis. F1000Research 2019, 8, 743.
  56. Li, Y.; Huang, X.; Qin, Y.; Wu, H.; Yan, X.; Chen, Y. What is the most appropriate induction regimen for the treatment of hiv-associated cryptococcal meningitis when the recommended regimen is not available? Evidence from a network meta-analysis. Front. Pharmacol. 2020.
  57. Chang, C.C.; Dorasamy, A.A.; Gosnell, B.I.; Elliott, J.H.; Spelman, T.; Omarjee, S.; Naranbhai, V.; Coovadia, Y.; Ndung’u, T.; Moosa, M.-Y.S.; et al. Clinical and mycological predictors of cryptococcosis-associated immune reconstitution inflammatory syndrome. AIDS 2013, 27, 2089–2099.
  58. Psichogiou, M.; Basoulis, D.; Tsikala-Vafea, M.; Vlachos, S.; Kapelios, C.J.; Daikos, G.L. Integrase Strand Transfer Inhibitors and the Emergence of Immune Reconstitution Inflammatory Syndrome (IRIS). Curr. HIV Res. 2018, 15.
  59. Wijting, I.E.A.; Wit, F.W.N.M.; Rokx, C.; Leyten, E.M.S.; Lowe, S.H.; Brinkman, K.; Bierman, W.F.W.; van Kasteren, M.E.E.; Postma, A.M.; Bloemen, V.C.M.; et al. Immune reconstitution inflammatory syndrome in HIV infected late presenters starting integrase inhibitor containing antiretroviral therapy. EClinicalMedicine 2019.
  60. Jhamb, R.; Kashyap, B.; Das, S.; Berry, N.; Garg, A. Symptomatic relapse of HIV-associated cryptococcal meningitis: Recurrent cryptococcal meningitis or Cryptococcus-related immune reconstitution inflammatory syndrome? Int. J. STD AIDS 2014.
  61. Geretti, A.M.; Fox, Z.; Johnson, J.A.; Booth, C.; Lipscomb, J.; Stuyver, L.J.; Tachedjian, G.; Baxter, J.; Touloumi, G.; Lehmann, C.; et al. Sensitive Assessment of the Virologic Outcomes of Stopping and Restarting Non-Nucleoside Reverse Transcriptase Inhibitor-Based Antiretroviral Therapy. PLoS ONE 2013, 8, e69266.
  62. Llibre, J.M.; Pulido, F.; García, F.; García Deltoro, M.; Blanco, J.L.; Delgado, R. Genetic barrier to resistance for dolutegravir. AIDS Rev. 2015.
  63. Ryom, L.; Cotter, A.; De Miguel, R.; Béguelin, C.; Podlekareva, D.; Arribas, J.R.; Marzolini, C.; Mallon, P.G.M.; Rauch, A.; Kirk, O.; et al. 2019 update of the European AIDS Clinical Society Guidelines for treatment of people living with HIV version 10.0. HIV Med. 2020.
  64. Chang, C.C.; Kangethe, R.; Omarjee, S.; Hiramen, K.; Gosnell, B.; Sojane, K.; Moosa, M.Y.S.; Lewin, S.R.; French, M.A.; Ndung’u, T. Relationship of human immunodeficiency virus viral load in cerebrospinal fluid and plasma in patients co-infected with cryptococcal meningitis. Open Forum Infect. Dis. 2017, 4, ofx032.
  65. Lutgen, V.; Narasipura, S.D.; Barbian, H.J.; Richards, M.; Wallace, J.; Razmpour, R.; Buzhdygan, T.; Ramirez, S.H.; Prevedel, L.; Eugenin, E.A.; et al. HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathog. 2020.
  66. Massanella, M.; Bakeman, W.; Sithinamsuwan, P.; Fletcher, J.L.K.; Chomchey, N.; Tipsuk, S.; Chalermchai, T.; Routy, J.-P.; Ananworanich, J.; Valcour, V.G.; et al. Infrequent HIV Infection of Circulating Monocytes during Antiretroviral Therapy. J. Virol. 2019.
  67. Ghislain, M.; Bastard, J.P.; Meyer, L.; Capeau, J.; Fellahi, S.; Gérard, L.; May, T.; Simon, A.; Vigouroux, C.; Goujard, C. Late antiretroviral therapy (ART) initiation is associated with long-term persistence of systemic inflammation and metabolic abnormalities. PLoS ONE 2015, 10, e0144317.
  68. Pornprasert, S.; Traisathit, P.; Singboottra, P.; Huong, N.N. Treatment of Opportunistic Infections Prior to HAART Initiation Does Not Affect Immune Reconstitution in HIV-Infected Patients. Curr. HIV Res. 2016.
  69. Lewis, J.; Payne, H.; Sarah Walker, A.; Otwombe, K.; Gibb, D.M.; Babiker, A.G.; Panchia, R.; Cotton, M.F.; Violari, A.; Klein, N.; et al. Thymic output and CD4 T-cell reconstitution in HIV-infected children on early and interrupted antiretroviral treatment: Evidence from the children with HIV early antiretroviral therapy trial. Front. Immunol. 2017.
  70. Fromentin, R.; Bakeman, W.; Lawani, M.B.; Khoury, G.; Hartogensis, W.; DaFonseca, S.; Killian, M.; Epling, L.; Hoh, R.; Sinclair, E.; et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016.
  71. Antonelli, L.R.V.; Mahnke, Y.; Hodge, J.N.; Porter, B.O.; Barber, D.L.; DerSimonian, R.; Greenwald, J.H.; Roby, G.; Mican, J.; Sher, A.; et al. Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood 2010, 116, 3818–3827.
  72. Fromentin, R.; DaFonseca, S.; Costiniuk, C.T.; El-Far, M.; Procopio, F.A.; Hecht, F.M.; Hoh, R.; Deeks, S.G.; Hazuda, D.J.; Lewin, S.R.; et al. PD-1 blockade potentiates HIV latency reversal ex vivo in CD4 + T cells from ART-suppressed individuals. Nat. Commun. 2019.
  73. Martin, G.E.; Pace, M.; Shearer, F.M.; Zilber, E.; Hurst, J.; Meyerowitz, J.; Thornhill, J.P.; Lwanga, J.; Brown, H.; Robinson, N.; et al. Levels of human immunodeficiency virus dna are determined before art initiation and linked to CD8 T-cell activation and memory expansion. J. Infect. Dis. 2020.
  74. Anzinger, J.J.; Butterfield, T.R.; Angelovich, T.A.; Crowe, S.M.; Palmer, C.S. Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J. Immunol. Res. 2014.
  75. World Health Organization. Guidelines for the Diagnosis, Prevention, and Management of Cryptococcal Disease in HIV-Infected Adults, Adolescents and Children, March 2018: Supplement to the 2016 Consolidated Guidelines of the Use of Antiretroviral. 2018. Available online: (accessed on 6 October 2020).
  76. Lawrence, D.S.; Youssouf, N.; Molloy, S.L.F.; Alanio, A.; Alufandika, M.; Boulware, D.R.; Boyer-Chammard, T.; Chen, T.; Dromer, F.; Hlupeni, A.; et al. AMBIsome Therapy Induction OptimisatioN (AMBITION): High Dose AmBisome for Cryptococcal Meningitis Induction Therapy in sub-Saharan Africa: Study Protocol for a Phase 3 Randomised Controlled Non-Inferiority Trial 11 Medical and Health Sciences 1103 Clinic. Trials 2018, 19, 1–13.
  77. Molloy, S.F.; Kanyama, C.; Heyderman, R.S.; Loyse, A.; Kouanfack, C.; Chanda, D.; Mfinanga, S.; Temfack, E.; Lakhi, S.; Lesikari, S.; et al. Antifungal combinations for treatment of cryptococcal meningitis in Africa. N. Engl. J. Med. 2018, 378, 1004–1017.
  78. Molefi, M.; Chofle, A.A.; Molloy, S.F.; Kalluvya, S.; Changalucha, J.M.; Cainelli, F.; Leeme, T.; Lekwape, N.; Goldberg, D.W.; Haverkamp, M.; et al. AMBITION-cm: Intermittent high dose AmBisome on a high dose fluconazole backbone for cryptococcal meningitis induction therapy in sub-Saharan Africa: Study protocol for a randomized controlled trial. Trials 2015.
  79. Skipper, C.P.; Atukunda, M.; Stadelman, A.; Engen, N.W.; Bangdiwala, A.S.; Hullsiek, K.H.; Abassi, M.; Rhein, J.; Nicol, M.R.; Laker, E.; et al. Phase I EnACT trial of the safety and tolerability of a novel oral formulation of amphotericin B. Antimicrob. Agents Chemother. 2020.
  80. Concha-Velasco, F.; González-Lagos, E.; Seas, C.; Bustamante, B. Factors associated with early mycological clearance in HIV-associated cryptococcal meningitis. PLoS ONE 2017, 12, e0174459.
  81. Loyse, A.; Wilson, D.; Meintjes, G.; Jarvis, J.N.; Bicanic, T.; Bishop, L.; Rebe, K.; Williams, A.; Jaffar, S.; Bekker, L.G.; et al. Comparison of the early fungicidal activity of high-dose fluconazole, voriconazole, and flucytosine as second-line drugs given in combination with amphotericin B for the treatment of HIV-associated cryptococcal meningitis. Clin. Infect. Dis. 2012, 54, 121–128.
  82. Li, S.S.; Tang, X.Y.; Zhang, S.G.; Ni, S.L.; Yang, N.B.; Lu, M.Q. Voriconazole combined with low-dose amphotericin B liposome for treatment of cryptococcal meningitis. Infect. Dis. (Auckl.) 2016, 48, 563–565.
  83. Zeng, G.; Wang, L.; Shi, L.; Li, H.; Zhu, M.; Luo, J.; Zhang, Z. Variability of voriconazole concentrations in patients with hematopoietic stem cell transplantation and hematological malignancies: Influence of loading dose, procalcitonin, and pregnane X receptor polymorphisms. Eur. J. Clin. Pharmacol. 2020.
  84. Wong, T.Y.; Loo, Y.S.; Veettil, S.K.; Wong, P.S.; Divya, G.; Ching, S.M.; Menon, R.K. Efficacy and safety of posaconazole for the prevention of invasive fungal infections in immunocompromised patients: A systematic review with meta-analysis and trial sequential analysis. Sci. Rep. 2020.
  85. Jørgensen, K.M.; Astvad, K.M.T.; Hare, R.K.; Arendrup, M.C. EUCAST susceptibility testing of isavuconazole: MIC data for contemporary clinical mold and yeast isolates. Antimicrob. Agents Chemother. 2019.
  86. Houšť, J.; Spížek, J.; Havlíček, V. Antifungal drugs. Metabolites 2020, 10, 106.
  87. Lockhart, S.R.; Fothergill, A.W.; Iqbal, N.; Bolden, C.B.; Grossman, N.T.; Garvey, E.P.; Brand, S.R.; Hoekstra, W.J.; Schotzinger, R.J.; Ottinger, E.; et al. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob. Agents Chemother. 2016, 60, 2528–2531.
  88. Nielsen, K.; Vedula, P.; Smith, K.D.; Meya, D.B.; Garvey, E.P.; Hoekstra, W.J.; Schotzinger, R.J.; Boulware, D.R. Activity of VT-1129 against Cryptococcus neoformans clinical isolates with high fluconazole MICs. Med. Mycol. 2017.
  89. Quan, V.; Toro-Silva, S.; Sriruttan, C.; Chetty, V.; Chihota, V.; Candfield, S.; Vassall, A.; Grant, A.D.; Govender, N.P. Pathways to care and outcomes among hospitalised HIV-seropositive persons with cryptococcal meningitis in South Africa. PLoS ONE 2019, 14, e0225742.
  90. Bongomin, F.; Atikoro, L. Recurrence of Cryptococcal Meningitis and the Hidden Role of Patient Education and Social Support. Case Rep. Neurol. Med. 2018.
  91. Bisson, G.P.; Molefi, M.; Bellamy, S.; Thakur, R.; Steenhoff, A.; Tamuhla, N.; Rantleru, T.; Tsimako, I.; Gluckman, S.; Ravimohan, S.; et al. Early versus delayed antiretroviral therapy and cerebrospinal fluid fungal clearance in adults with HIV and Cryptococcal meningitis. Clin. Infect. Dis. 2013.
  92. Boulware, D.R.; Meya, D.B.; Muzoora, C.; Rolfes, M.A.; Huppler Hullsiek, K.; Musubire, A.; Taseera, K.; Nabeta, H.W.; Schutz, C.; Williams, D.A.; et al. Timing of Antiretroviral Therapy after Diagnosis of Cryptococcal Meningitis. N. Engl. J. Med. 2014, 370, 2487–2498.
  93. Alufandika, M.; Lawrence, D.S.; Boyer-Chammard, T.; Kanyama, C.; Ndhlovu, C.E.; Mosepele, M.; Tugume, L.; Meya, D.; Boulware, D.R.; Rhein, J.; et al. A pragmatic approach to managing antiretroviral therapy-experienced patients diagnosed with HIV-associated cryptococcal meningitis: Impact of antiretroviral therapy adherence and duration. AIDS 2020, 34, 1425–1428.
  94. Govender, N.P.; Meintjes, G.; Mangena, P.; Nel, J.; Potgieter, S.; Reddy, D.; Rabie, H.; Wilson, D.; Black, J.; Boulware, D.; et al. Southern African HIV Clinicians Society guideline for the prevention, diagnosis and management of cryptococcal disease among HIV-infected persons: 2019 update. South. Afr. J. HIV Med. 2019.
  95. Cherian, J.; Atmar, R.L.; Gopinath, S.P. Shunting in cryptococcal meningitis. J. Neurosurg. 2016.
  96. Beardsley, J.; Hoang, N.L.T.; Kibengo, F.M.; Tung, N.L.N.; Binh, T.Q.; Hung, L.Q.; Chierakul, W.; Thwaites, G.E.; Chau, N.V.V.; Nguyen, T.T.T.; et al. Do intracerebral cytokine responses explain the harmful effects of dexamethasone in human immunodeficiency virus–associated cryptococcal meningitis? Clin. Infect. Dis. 2019.
  97. Day, J.; Imran, D.; Ganiem, A.R.; Tjahjani, N.; Wahyuningsih, R.; Adawiyah, R.; Dance, D.; Mayxay, M.; Newton, P.; Phetsouvanh, R.; et al. CryptoDex: A randomised, double-blind, placebo-controlled phase III trial of adjunctive dexamethasone in HIV-infected adults with cryptococcal meningitis: Study protocol for a randomised control trial. Trials 2014.
  98. Beardsley, J.; Wolbers, M.; Kibengo, F.M.; Ggayi, A.-B.M.; Kamali, A.; Cuc, N.T.K.; Binh, T.Q.; Chau, N.V.V.; Farrar, J.; Merson, L.; et al. Adjunctive Dexamethasone in HIV-Associated Cryptococcal Meningitis. N. Engl. J. Med. 2016.
  99. Piconi, S.; Parisotto, S.; Rizzardini, G.; Passerini, S.; Terzi, R.; Argenteri, B.; Meraviglia, P.; Capetti, A.; Biasin, M.; Trabattoni, D.; et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 2011.
  100. Brunel, A.-S.; Reynes, J.; Tuaillon, E.; Rubbo, P.-A.; Lortholary, O.; Montes, B.; Le Moing, V.; Makinson, A. Thalidomide for steroid-dependent immune reconstitution inflammatory syndromes during AIDS. AIDS 2012, 26, 2110–2112.
  101. Gaube, G.; De Castro, N.; Gueguen, A.; Lascoux, C.; Zagdanski, A.-M.; Alanio, A.; Molina, J.-M. Treatment with adalimumab for severe immune reconstitution inflammatory syndrome in an HIV-infected patient presenting with cryptococcal meningitis. Médecine Mal. Infect. 2016, 46, 154–156.
  102. Jarvis, J.N.; Meintjes, G.; Rebe, K.; Williams, G.N.; Bicanic, T.; Williams, A.; Schutz, C.; Bekker, L.G.; Wood, R.; Harrison, T.S. Adjunctive interferon-γ immunotherapy for the treatment of HIV-associated cryptococcal meningitis: A randomized controlled trial. AIDS 2012.
  103. Gamaletsou, M.N.; Sipsas, N.V.; Kontoyiannis, D.P.; Tsiakalos, A.; Kontos, A.N.; Stefanou, I.; Kordossis, T. Successful salvage therapy of refractory HIV-related cryptococcal meningitis with the combination of liposomal amphotericin B, voriconazole, and recombinant interferon-γ. Diagn. Microbiol. Infect. Dis. 2012, 74, 409–411.
  104. Meintjes, G.; Scriven, J.; Marais, S. Management of the Immune Reconstitution Inflammatory Syndrome. Curr. HIV/AIDS Rep. 2012, 9, 238–250.
  105. Bosamiya, S. The immune reconstitution inflammatory syndrome. Indian J. Dermatol. 2011, 56, 476.
Subjects: Pathology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 323
Revisions: 2 times (View History)
Update Date: 27 Feb 2021