Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 813 word(s) 813 2021-02-19 09:12:59 |
2 format change Meta information modification 813 2021-02-24 10:43:19 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Kahler, C. Neisseria gonorrhoeae. Encyclopedia. Available online: (accessed on 15 April 2024).
Kahler C. Neisseria gonorrhoeae. Encyclopedia. Available at: Accessed April 15, 2024.
Kahler, Charlene. "Neisseria gonorrhoeae" Encyclopedia, (accessed April 15, 2024).
Kahler, C. (2021, February 23). Neisseria gonorrhoeae. In Encyclopedia.
Kahler, Charlene. "Neisseria gonorrhoeae." Encyclopedia. Web. 23 February, 2021.
Neisseria gonorrhoeae

Neisseria gonorrhoeae is a Gram-negative diplococcus which causes the sexually transmitted infection (STI) gonorrhea.

Neisseria gonorrhoeae pelvic inflammatory disease anti-virulence therapeutics antimicrobial resistance

1. Introduction

Neisseria gonorrhoeae is a Gram-negative diplococcus which causes the sexually transmitted infection (STI) gonorrhea. The World Health Organization (WHO) estimates that of the 376 million new cases per annum of treatable STIs (chlamydia, gonorrhea, syphilis and trichomoniasis), N. gonorrhoeae caused 87 million cases globall[1]. Specifically, in the United States, gonorrhea is the second most commonly reported notifiable infection. A 2018 surveillance report by the Centers for Disease Control and Prevention determined that a total of 583,405 cases had been recorded, an 82.6% increase from the historic low observed in 2009[2]. A study on the total lifetime direct medical cost of gonorrhea infections on the US healthcare system was approximately $81.1 to $243.2 million [3]. However, this cost does not reflect the true economic burden of N. gonorrhoeae infections since it did not include costs associated with adverse pregnancy outcomes, disease prevention or productivity loss.

N. gonorrhoeae most commonly colonizes the genital mucosa, but can also colonize the ocular, nasopharyngeal and anal mucosa. Gonococcal infections in men are predominantly symptomatic, but pharyngeal and rectal infections in men are overwhelmingly asymptomatic. Symptomatic patients usually present with acute urethritis, displaying symptoms of dysuria and urethral discharge[4][5][6][7][8]. On the other hand, infections in women are frequently asymptomatic, with some studies indicating up to 70% asymptomatic infection rates[9]. Symptomatic infections of the genital mucosa usually manifest as cervicitis, urethritis and occasionally as pelvic inflammatory disease (PID)[10]. Asymptomatic cases are reservoirs that promote gonorrhea transmission, and undetected AMR strains from these reservoir sites may promote the spread of resistance.

Gonococcal urethritis significantly increases the risk of acquiring and transmitting HIV, thus substantially contributing to the public health burden of this infection[11][12][13][14][15]. Genital infections in pregnant women can have adverse effects on the fetus including spontaneous preterm birth, chorioamnionitis, low birth weight, premature rupture of membranes and spontaneous abortion[16][17]. Additionally, transmission to the neonate may occur during passage through the birth canal. The effects of gonococcal disease for neonates include severe eye infections and bacteremia that can lead to ulceration of the cornea, perforation of the globe of the eyes or permanent blindness[18][19][20][21].

To date, no successful vaccine strategies have been developed for gonorrhea in humans, as individuals can contract the disease multiple times throughout their lifetime, suggesting that there is no natural immunity and therefore correlates of protection to benchmark vaccine efficacy[22][23]. Recent studies have observed an association of reduced prevalence of gonorrhea in individuals who have received the N. meningitidis serogroup B vaccine Bexsero®, suggesting that there may be cross-protective immunological responses elicited from common antigens in the meningococcal outer membrane (OM) vesicle component [24][25]. Further work is required to fully analyze the immune response elicited by this vaccine, but this provides a framework for future gonococcal vaccines, and reinforces the requirement for human clinical trials to identify successful vaccine antigens[26].

2. Pathogenesis Mechanisms of N. gonorrhoeae

Following transmission from an infected to uninfected host, the gonococcus adheres to the apical side of the epithelial cells. This is mediated through gonococcal surface structures such as type IV pili (tfp), opacity (Opa) proteins, lipooligosaccharide (LOS) and the major OM protein porin, PorB  Tfp, LOS and Opa can undergo both phase and antigenic variation during infection that minimizes recognition and elimination by the immune system[27].

Primary attachment is initiated by tfp which bind to the host cell surface receptor CD46 and/or complement receptor 3[28][29]. In vitro studies indicate that antigenic variation of tfp influences pilus-mediated adherence to human tissue, colony morphology and DNA transformation efficiency[30][31]. To promote further intimate attachment, Opa proteins, which are phase variable[32], adhere to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors, but some variants can bind to heparan sulfate proteoglycans (HSPGs) on host cells[28][33][34][35][36]. Attachment is also mediated by gonococcal LOS, which binds specifically to the host asialoglycoprotein receptor on HepG2 cells[37], human sperm cells [38] and epithelial cells [39]. Following adhesion, N. gonorrhoeae replicates to form microcolonies and biofilms[40][41], and some bacteria can proceed to invade epithelial cells by transcytosis[42][43][44]. During infection, gonococci releases fragments of bacterial LOS, peptidoglycan (PG) and OM vesicles during cell growth that activate two pattern recognition receptors, toll-like receptor (TLR) and nucleotide-binding oligomerization domain-like receptor (NOD) on epithelial cells, macrophages and dendritic cells[45][46][47][48][49][52][53][54]. N. gonorrhoeae also releases heptose-1,7-bisphosphate, a precursor for the incorporation of heptose into LOS, which activates TNF receptor-associated factor-interacting protein with forkhead-associated protein A (TIFA)-dependent immunity[50][51]. Activation of these TIFA, NOD and TLR signaling pathways leads to the activation of inflammatory transcription factors and release of pro-inflammatory cytokines and chemokines (e.g., IL-6, IL-8, CXCL3, CXCL10 and TNF-α) [28][52][53]. In response to these signals, large amounts of polymorphonuclear leukocytes (PMNs) are recruited to the site of infection, where N. gonorrhoeae is recognized and phagocytosed. Since gonococci can survive and replicate within PMNs, the massive influx of PMNs forms an observable purulent exudate that facilitates transmission[54].


  1. Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562, doi:10.2471/BLT.18.228486.
  2. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2018; Department of Health and Hu-man Services: Atlanta, GA, USA, 2019; doi:10.15620/cdc.79370.
  3. Owusu-Edusei, K.J.; Chesson, H.W.; Gift, T.L.; Tao, G.; Mahajan, R.; Ocfemia, M.C.B.; Kent, C.K. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex. Transm. Dis. 2013, 40, 197–201, doi:10.1097/OLQ.0b013e318285c6d2.
  4. Sherrard, J.; Barlow, D. Gonorrhoea in men: Clinical and diagnostic aspects. Genitourin. Med. 1996, 72, 422–426.
  5. Kent, C.K.; Chaw, J.K.; Wong, W.; Liska, S.; Gibson, S.; Hubbard, G.; Klausner, J.D. Prevalence of rectal, urethral, and phar-yngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have sex with men: San Francisco, Califor-nia, 2003. Clin. Infect. Dis. 2005, 41, 67–74, doi:10.1086/430704.
  6. Morris, S.R.; Klausner, J.D.; Buchbinder, S.P.; Wheeler, S.L.; Koblin, B.; Coates, T.; Chesney, M.; Colfax, G.N. Prevalence and incidence of pharyngeal gonorrhea in a longitudinal sample of men who have sex with men: The EXPLORE study. Clin. In-fect. Dis. 2006, 43, 1284–1289, doi:10.1086/508460.
  7. Kinghorn, G. Pharyngeal gonorrhoea: A silent cause for concern. Sex. Transm. Infect. 2010, 86, 413–414, doi:10.1136/sti.2010.043349.
  8. Peters, R.P.; Verweij, S.P.; Nijsten, N.; Ouburg, S.; Mutsaers, J.; Jansen, C.L.; van Leeuwen, A.P.; Morré, S.A. Evaluation of sexual history-based screening of anatomic sites for Chlamydia trachomatis and Neisseria gonorrhoeae infection in men having sex with men in routine practice. BMC Infect. Dis. 2011, 11, 203, doi:10.1186/1471-2334-11-203.
  9. McCormack, W.M.; Johnson, K.; Stumacher, R.J.; Donner, A.; Rychwalski, R. Clinical spectrum of gonococcal infection in women. Lancet 1977, 309, 1182–1185, doi:10.1016/S0140-6736(77)92720-9.
  10. Walker, C.K.; Sweet, R.L. Gonorrhea infection in women: Prevalence, effects, screening, and management. Int. J. Womens Health 2011, 3, 197–206, doi:10.2147/IJWH.S13427.
  11. Ding, J.; Rapista, A.; Teleshova, N.; Mosoyan, G.; Jarvis, G.A.; Klotman, M.E.; Chang, T.L. Neisseria gonorrhoeae enhances HIV-1 infection of primary resting CD4+ T cells through TLR2 activation. J. Immunol. 2010, 184, 2814–2824, doi:10.4049/jimmunol.0902125.
  12. Jarvis, G.A.; Chang, T.L. Modulation of HIV transmission by Neisseria gonorrhoeae: Molecular and immunological aspects. Curr. HIV Res. 2012, 10, 211–217.13.
  13. Malott, R.J.; Keller, B.O.; Gaudet, R.G.; McCaw, S.E.; Lai, C.C.; Dobson-Belaire, W.N.; Hobbs, J.L.; Michael, F.S.; Cox, A.D.; Moraes, T.F. Neisseria gonorrhoeae-derived heptose elicits an innate immune response and drives HIV-1 expression. Proc. Natl. Acad. Sci. USA 2013, 110, 10234–10239, doi:10.1073/pnas.1303738110.
  14. Sanyal, A.; Shen, C.; Ding, M.; Reinhart, T.A.; Chen, Y.; Sankapal, S.; Gupta, P. Neisseria gonorrhoeae uses cellular proteins CXCL10 and IL8 to enhance HIV-1 transmission across cervical mucosa. Am. J. Reprod. Immunol. 2019, 81, e13111, doi:10.1111/aji.13111.
  15. Guvenc, F.; Kaul, R.; Gray-Owen, S.D. Intimate relations: Molecular and immunologic interactions between Neisseria gonor-rhoeae and HIV-1. Front. Microbiol. 2020, 11, 1299, doi:10.3389/fmicb.2020.01299.
  16. Maxwell, G.L.; Watson, W.J. Preterm premature rupture of membranes: Results of expectant management in patients with cervical cultures positive for group B streptococcus or Neisseria gonorrhoeae. Am. J. Obstet. Gynecol. 1992, 166, 945–949, doi:10.1016/0002-9378(92)91369-L.
  17. Heumann, C.L.; Quilter, L.A.S.; Eastment, M.C.; Heffron, R.; Hawes, S.E. Adverse birth outcomes and maternal Neisseria gonorrhoeae infection: A population-based cohort study in Washington State. Sex. Transm. Dis. 2017, 44, 266–271, doi:10.1097/OLQ.0000000000000592.
  18. Thompson, T.R.; Swanson, R.E.; Wiesner, P.J. Gonococcal ophthalmia neonatorum: Relationship of time of infection to rel-evant control measures. JAMA 1974, 228, 186–188, doi:10.1001/jama.1974.03230270030020.
  19. Rees, E.; Tait, I.A.; Hobson, D.; Byng, R.E.; Johnson, F.W. Neonatal conjunctivitis caused by Neisseria gonorrhoeae and Chla-mydia trachomatis. Sex. Transm. Infect. 1977, 53, 173–179, doi:10.1136/sti.53.3.173.
  20. Laga, M.; Meheus, A.; Piot, P. Epidemiology and control of gonococcal ophthalmia neonatorum. Bull. World Health Organ. 1989, 67, 471–477.
  21. Epling, J. Bacterial conjunctivitis. BMJ Clin. Evid. 2012, 2012, 0704.
  22. Fung, M.; Scott, K.C.; Kent, C.K.; Klausner, J.D. Chlamydial and gonococcal reinfection among men: A systematic review of data to evaluate the need for retesting. Sex. Transm. Infect. 2007, 83, 304–309, doi:10.1136/sti.2006.024059.
  23. Jerse, A.E.; Bash, M.C.; Russell, M.W. Vaccines against gonorrhea: Current status and future challenges. Vaccine 2014, 32, 1579–1587, doi:10.1016/j.vaccine.2013.08.067.
  24. Petousis-Harris, H.; Paynter, J.; Morgan, J.; Saxton, P.; McArdle, B.; Goodyear-Smith, F.; Black, S. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: A retrospective case-control study. Lancet 2017, 390, 1603–1610, doi:10.1016/S0140-6736(17)31449-6.
  25. Semchenko, E.A.; Tan, A.; Borrow, R.; Seib, K.L. The serogroup B meningococcal vaccine Bexsero elicits antibodies to Neis-seria gonorrhoeae. Clin. Infect. Dis. 2019, 69, 1101–1111, doi:10.1093/cid/ciy1061.
  26. Gottlieb, S.L.; Jerse, A.E.; Delany-Moretlwe, S.; Deal, C.; Giersing, B.K. Advancing vaccine development for gonorrhoea and the Global STI Vaccine Roadmap. Sex. Health 2019, 16, 426–432, doi:10.1071/SH19060.
  27. Seifert, H.S. Questions about gonococcal pilus phase- and antigenic variation. Mol. Microbiol. 1996, 21, 433–440, doi:10.1111/j.1365-2958.1996.tb02552.x.
  28. Hill, S.A.; Masters, T.L.; Wachter, J. Gonorrhea—an evolving disease of the new millennium. Microb. Cell 2016, 3, 371, doi:10.15698/mic2016.09.524.
  29. Kirchner, M.; Heuer, D.; Meyer, T.F. CD46-independent binding of neisserial type IV pili and the major pilus adhesin, PilC, to human epithelial cells. Infect. Immun. 2005, 73, 3072, doi:10.1128/IAI.73.5.3072-3082.2005.
  30. Jonsson, A.-B.; Ilver, D.; Falk, P.; Pepose, J.; Normark, S. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 1994, 13, 403–416, doi:10.1111/j.1365-2958.1994.tb00435.x.
  31. Long, C.D.; Madraswala, R.N.; Seifert, H.S. Comparisons between colony phase variation of Neisseria gonorrhoeae FA1090 and pilus, pilin, and S-pilin expression. Infect. Immun. 1998, 66, 1918–1927, doi:10.1128/IAI.66.5.1918-1927.1998.
  32. Stern, A.; Brown, M.; Nickel, P.; Meyer, T.F. Opacity genes in Neisseria gonorrhoeae: Control of phase and antigenic variation. Cell 1986, 47, 61–71, doi:10.1016/0092-8674(86)90366-1.
  33. Edwards, J.L.; Apicella, M.A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 2004, 17, 965–981, doi:10.1128/CMR.17.4.965-981.2004.
  34. Quillin, S.J.; Seifert, H.S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 226–240, doi:10.1038/nrmicro.2017.169.
  35. Van Putten, J.P.; Paul, S.M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995, 14, 2144–2154.
  36. Chen, T.; Belland, R.J.; Wilson, J.; Swanson, J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J. Exp. Med. 1995, 182, 511–517, doi:10.1084/jem.182.2.511.
  37. Porat, N.; Apicella, M.A.; Blake, M.S. Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line. Infect. Immun. 1995, 63, 1498–1506.
  38. Harvey, H.A.; Porat, N.; Campbell, C.A.; Jennings, M.; Gibson, B.W.; Phillips, N.J.; Apicella, M.A.; Blake, M.S. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol. Microbiol. 2000, 36, 1059–1070, doi:10.1046/j.1365-2958.2000.01938.x.
  39. Harvey, H.A.; Jennings, M.P.; Campbell, C.A.; Williams, R.; Apicella, M.A. Receptor-mediated endocytosis of Neisseria gon-orrhoeae into primary human urethral epithelial cells: The role of the asialoglycoprotein receptor. Mol. Microbiol. 2001, 42, 659–672, doi:10.1046/j.1365-2958.2001.02666.x.
  40. Higashi, D.L.; Lee, S.W.; Snyder, A.; Weyand, N.J.; Bakke, A.; So, M. Dynamics of Neisseria gonorrhoeae attachment: Microcol-ony development, cortical plaque formation, and cytoprotection. Infect. Immun. 2007, 75, 4743–4753, doi:10.1128/IAI.00687-07.
  41. Anderson, M.T.; Byerly, L.; Apicella, M.A.; Seifert, H.S. Seminal plasma promotes Neisseria gonorrhoeae aggregation and bio-film formation. J. Bacteriol. 2016, 198, 2228–2235, doi:10.1128/JB.00165-16.
  42. Merz, A.J.; Rifenbery, D.B.; Arvidson, C.G.; So, M. Traversal of a polarized epithelium by pathogenic Neisseriae: Facilitation by type IV pili and maintenance of epithelial barrier function. Mol. Med. 1996, 2, 745–754, doi:10.1007/BF03401658.
  43. Wang, J.; Gray-Owen, S.D.; Knorre, A.; Meyer, T.F.; Dehio, C. Opa binding to cellular CD66 receptors mediates the transcel-lular traversal of Neisseria gonorrhoeae across polarized T84 epithelial cell monolayers. Mol. Microbiol. 1998, 30, 657–671, doi:10.1046/j.1365-2958.1998.01102.x.
  44. Ilver, D.; Källström, H.; Normark, S.; Jonsson, A.-B. Transcellular passage of Neisseria gonorrhoeae involves pilus phase varia-tion. Infect. Immun. 1998, 66, 469–473, doi:10.1128/IAI.66.2.469-473.1998.
  45. Sinha, R.K.; Rosenthal, R.S. Release of soluble peptidoglycan from growing gonococci: Demonstration of anhy-dro-muramyl-containing fragments. Infect. Immun. 1980, 29, 914–925.
  46. Kaparakis, M.; Turnbull, L.; Carneiro, L.; Firth, S.; Coleman, H.A.; Parkington, H.C.; Bourhis, L.L.; Karrar, A.; Viala, J.; Mak, J.; et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol. 2010, 12, 372–385, doi:10.1111/j.1462-5822.2009.01404.x.
  47. Liu, M.; John, C.M.; Jarvis, G.A. Phosphoryl moieties of lipid A from Neisseria meningitidis and N. gonorrhoeae lipooligosac-charides play an important role in activation of both MyD88- and TRIF-Dependent TLR4–MD-2 signaling pathways. J. Im-munol. 2010, 185, 6974–6984, doi:10.4049/jimmunol.1000953.
  48. Mavrogiorgos, N.; Mekasha, S.; Yang, Y.; Kelliher, M.A.; Ingalls, R.R. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun. 2014, 20, 377–389, doi:10.1177/1753425913493453.
  49. Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619, doi:10.1038/nrmicro3525.
  50. Gaudet, R.G.; Sintsova, A.; Buckwalter, C.M.; Leung, N.; Cochrane, A.; Li, J.; Cox, A.D.; Moffat, J.; Gray-Owen, S.D. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 2015, 348, 1251–1255, doi:10.1126/science.aaa4921.
  51. Pachathundikandi, K.; Backert, S. Heptose 1,7-bisphosphate directed TIFA oligomerization: A novel PAMP-recognizing signaling platform in the control of bacterial infections. Gastroenterology 2018, 154, 778–783, doi:10.1053/j.gastro.2018.01.009.
  52. Ramsey, K.H.; Schneider, H.; Cross, A.S.; Boslego, J.W.; Hoover, D.L.; Staley, T.L.; Kuschner, R.A.; Deal, C.D. Inflammatory cytokines produced in response to experimental human gonorrhea. J. Infect. Dis. 1995, 172, 186–191, doi:10.1093/infdis/172.1.186.
  53. Zughaier, S.M.; Kandler, J.L.; Balthazar, J.T.; Shafer, W.M. Phosphoethanolamine modification of Neisseria gonorrhoeae lipid A reduces autophagy flux in macrophages. PLoS ONE 2015, 10, e0144347, doi:10.1371/journal.pone.0144347.
  54. Criss, A.K.; Seifert, H.S. A bacterial siren song: Intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 2012, 10, 178–90, doi:10.1038/nrmicro2713.
Subjects: Microbiology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 566
Revisions: 2 times (View History)
Update Date: 24 Feb 2021