Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 659 word(s) 659 2020-12-15 08:04:50

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Guo, L. PIK3R2 Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/5765 (accessed on 20 July 2024).
Guo L. PIK3R2 Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/5765. Accessed July 20, 2024.
Guo, Lily. "PIK3R2 Gene" Encyclopedia, https://encyclopedia.pub/entry/5765 (accessed July 20, 2024).
Guo, L. (2020, December 25). PIK3R2 Gene. In Encyclopedia. https://encyclopedia.pub/entry/5765
Guo, Lily. "PIK3R2 Gene." Encyclopedia. Web. 25 December, 2020.
PIK3R2 Gene
Edit

phosphoinositide-3-kinase regulatory subunit 2

genes

1. Introduction

The PIK3R2 gene provides instructions for making one piece (subunit) of an enzyme called phosphatidylinositol 3-kinase (PI3K). The primary function of the subunit, which is known as P85β, is to regulate the PI3K enzyme's activity.

PI3K is a kinase, which means that it adds a cluster of oxygen and phosphorus atoms (a phosphate group) to other proteins through a process called phosphorylation. PI3K phosphorylates certain signaling molecules, which triggers a series of additional reactions as part of a chemical signaling pathway called the PI3K-AKT-mTOR pathway. This signaling influences many critical cell functions, including the creation (synthesis) of new proteins, cell growth and division (proliferation), and the survival of cells. The PI3K-AKT-mTOR pathway is essential for the normal development of many parts of the body, including the brain.

2. Health Conditions Related to Genetic Changes

2.1. Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

At least four mutations in the PIK3R2 gene have been found to cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. This rare condition affects the development of the brain, causing an unusually large brain and head size (megalencephaly) and other abnormalities of the brain's structure. Some affected individuals also have an extra finger or toe on one or more of their hands or feet (polydactyly).

Each of the known mutations changes a single protein building block (amino acid) in the P85β subunit of PI3K. The most common mutation replaces the amino acid glycine with the amino acid arginine at position 373 (written as Gly373Arg or G373R). All of the mutations are described as "gain-of-function" because they increase the activity of PI3K. This enhanced activity increases chemical signaling through the PI3K-AKT-mTOR pathway, which leads to excessive cell growth and division. In the brain, the increased number of cells leads to rapid and abnormal brain growth starting before birth. It is less clear how these changes contribute to polydactyly, although the extra digits are probably related to abnormal cell proliferation in the developing hands and feet.

2.2. Other disorders

Mutations in the PIK3R2 gene have been found to cause a brain abnormality called bilateral perisylvian polymicrogyria (BPP). The surface of the brain normally has many ridges or folds, called gyri. In people with BPP, an area of the brain called the perisylvian region develops too many gyri, and the folds are unusually small. BPP is one of the major brain abnormalities associated with MPPH syndrome (described above), but mutations in the PIK3R2 gene have also been identified in people with BPP who do not have the other signs and symptoms of MPPH syndrome.

Like the genetic changes that cause MPPH syndrome, the PIK3R2 gene mutations associated with BPP are gain-of-function, ultimately leading to increased cell growth and division in the developing brain. The increased number of cells causes abnormal development of the gyri starting before birth. Gly373Arg, the most common mutation identified in people with MPPH syndrome, can also cause BPP.

In some cases of BPP, a PIK3R2 gene mutation is present from birth in essentially every cell of the body. In other cases, the mutation is somatic, meaning it occurs at some point during embryonic development. As cells continue to grow and divide, some of these cells will have the genetic change, and others will not (a situation known as mosaicism). It is unclear why mutations in the same gene, and sometimes the very same mutation, cause BPP in some people and MPPH in others. It is possible that the number and location of brain cells that have the mutation (in cases of mosaicism) help determine which abnormalities of brain growth will occur.

3. Other Names for This Gene

  • p85
  • p85-BETA
  • P85B
  • phosphatidylinositol 3-kinase 85 kDa regulatory subunit beta
  • phosphatidylinositol 3-kinase regulatory subunit beta
  • phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 2 (p85 beta)
  • phosphoinositide-3-kinase regulatory subunit beta
  • phosphoinositide-3-kinase, regulatory subunit 2 (beta)
  • PI3-kinase subunit p85-beta
  • PI3K regulatory subunit beta
  • ptdIns-3-kinase regulatory subunit p85-beta

References

  1. Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activatingmutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin MedGenet. 2013 May;163C(2):122-30. doi: 10.1002/ajmg.c.31361.
  2. Nakamura K, Kato M, Tohyama J, Shiohama T, Hayasaka K, Nishiyama K, Kodera H, Nakashima M, Tsurusaki Y, Miyake N, Matsumoto N, Saitsu H. AKT3 and PIK3R2mutations in two patients with megalencephaly-related syndromes: MCAP and MPPH.Clin Genet. 2014 Apr;85(4):396-8. doi: 10.1111/cge.12188.
  3. Rivière JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, Worthylake T, Sullivan CT, Ward TR, Butler HE, Kramer NA, Albrecht B, Armour CM, Armstrong L, Caluseriu O, CytrynbaumC, Drolet BA, Innes AM, Lauzon JL, Lin AE, Mancini GM, Meschino WS, Reggin JD,Saggar AK, Lerman-Sagie T, Uyanik G, Weksberg R, Zirn B, Beaulieu CL; Finding of Rare Disease Genes (FORGE) Canada Consortium, Majewski J, Bulman DE, O'DriscollM, Shendure J, Graham JM Jr, Boycott KM, Dobyns WB. De novo germline andpostzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of relatedmegalencephaly syndromes. Nat Genet. 2012 Jun 24;44(8):934-40. doi:10.1038/ng.2331.
  4. Tapper WJ, Foulds N, Cross NC, Aranaz P, Score J, Hidalgo-Curtis C, RobinsonDO, Gibson J, Ennis S, Temple IK, Collins A. Megalencephaly syndromes: exomepipeline strategies for detecting low-level mosaic mutations. PLoS One. 2014 Jan 31;9(1):e86940. doi: 10.1371/journal.pone.0086940.
  5. Terrone G, Voisin N, Abdullah Alfaiz A, Cappuccio G, Vitiello G, Guex N,D'Amico A, James Barkovich A, Brunetti-Pierri N, Del Giudice E, Reymond A. Denovo PIK3R2 variant causes polymicrogyria, corpus callosum hyperplasia and focal cortical dysplasia. Eur J Hum Genet. 2016 Aug;24(9):1359-62. doi:10.1038/ejhg.2016.7.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 438
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 25 Dec 2020
1000/1000
Video Production Service