Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 282 word(s) 282 2020-12-15 07:54:30

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Li, V. GDF3 Gene. Encyclopedia. Available online: (accessed on 16 June 2024).
Li V. GDF3 Gene. Encyclopedia. Available at: Accessed June 16, 2024.
Li, Vivi. "GDF3 Gene" Encyclopedia, (accessed June 16, 2024).
Li, V. (2020, December 25). GDF3 Gene. In Encyclopedia.
Li, Vivi. "GDF3 Gene." Encyclopedia. Web. 25 December, 2020.
GDF3 Gene

Growth differentiation factor 3


1. Normal Function

The GDF3 gene provides instructions for making a protein that is part of the transforming growth factor beta (TGFβ) superfamily, which is a group of proteins that help control the growth and development of tissues throughout the body. Within the TGFβ superfamily, the GDF3 protein belongs to the bone morphogenetic protein family, which is involved in regulating the growth and maturation (differentiation) of bone and cartilage. Cartilage is a tough but flexible tissue that makes up much of the skeleton during early development. The proteins in this family are regulators of cell growth and differentiation both before and after birth. While the GDF3 protein is known to be involved in bone and cartilage development, its exact role is unclear.

The GDF3 protein has also been found to be involved in the development of the eyes, specifically the specialized light-sensitive tissue that lines the back of the eye called the retina.

2. Health Conditions Related to Genetic Changes

2.1 Klippel-Feil Syndrome

At least four mutations in the GDF3 gene have been found to cause Klippel-Feil syndrome, a condition characterized by the abnormal joining (fusion) of two or more spinal bones in the neck (cervical vertebrae) and a variety of other features affecting many parts of the body. GDF3 gene mutations that cause Klippel-Feil syndrome replace single protein building blocks (amino acids) in the GDF3 protein. These mutations likely lead to a reduction in functional protein. Although the GDF3 protein is involved in bone growth, it is unclear how a shortage of this protein leads to incomplete separation of the cervical vertebrae in people with Klippel-Feil syndrome.

2.2 Coloboma

2.3 Microphthalmia

3. Other Names for This Gene

  • GDF-3


  • growth/differentiation factor 3


  1. Levine AJ, Brivanlou AH. GDF3 at the crossroads of TGF-beta signaling. CellCycle. 2006 May;5(10):1069-73.
  2. Levine AJ, Levine ZJ, Brivanlou AH. GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses. Dev Biol. 2009 Jan 1;325(1):43-8. doi:10.1016/j.ydbio.2008.09.006.
  3. Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR,Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, UnderhillTM, Waskiewicz AJ, Lehmann OJ. Mutation of the bone morphogenetic protein GDF3causes ocular and skeletal anomalies. Hum Mol Genet. 2010 Jan 15;19(2):287-98.doi: 10.1093/hmg/ddp496.
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 447
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 25 Dec 2020
Video Production Service