Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2724 2024-02-07 12:40:31 |
2 layout & references Meta information modification 2724 2024-02-08 02:46:04 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Ostróżka-Cieślik, A. Modification of Preservative Fluids with Antioxidants. Encyclopedia. Available online: https://encyclopedia.pub/entry/54849 (accessed on 18 May 2024).
Ostróżka-Cieślik A. Modification of Preservative Fluids with Antioxidants. Encyclopedia. Available at: https://encyclopedia.pub/entry/54849. Accessed May 18, 2024.
Ostróżka-Cieślik, Aneta. "Modification of Preservative Fluids with Antioxidants" Encyclopedia, https://encyclopedia.pub/entry/54849 (accessed May 18, 2024).
Ostróżka-Cieślik, A. (2024, February 07). Modification of Preservative Fluids with Antioxidants. In Encyclopedia. https://encyclopedia.pub/entry/54849
Ostróżka-Cieślik, Aneta. "Modification of Preservative Fluids with Antioxidants." Encyclopedia. Web. 07 February, 2024.
Modification of Preservative Fluids with Antioxidants
Edit

Transplantation is currently the only effective treatment for patients with end-stage liver failure. Many advanced studies have been conducted to improve the efficiency of organ preservation techniques. Modifying the composition of the preservation fluids currently used may improve graft function and increase the likelihood of transplantation success. The modified fluid is expected to extend the period of safe liver storage in the peri-transplantation period and to increase the pool of organs for transplantation with livers from marginal donors. 

liver transplantation antioxidants organ preservation solution

1. Introduction

Liver injury due to ischemia and reperfusion is a significant problem in the peri-transplantation period. Warm ischemia results in damage to hepatocytes through the activation of Kupffer cells and pro-inflammatory cytokines. Cold IRI (ischemia–reperfusion injury) results in the dysfunction of hepatic sinusoidal endothelial cells and impaired microcirculation [1][2][3][4]. Endothelin-1 increase and nitric oxide decrease cause vasoconstriction [5]. Oxidative phosphorylation in mitochondria is inhibited. ATP stores are depleted and, consequently, the activity of the cell’s active transport system and membrane potential decreases. The level of Ca2+ ions in the cell increases, which affects the activation of cell-damaging enzymes such as phospholipases, endonucleases, proteases, and ATP-ase. The rate of anaerobic glycolysis increases. Mitochondria become swollen and highly permeable channels are formed in their inner membrane. Cytochrome c is released into the cytoplasm, which can direct the cell into the apoptosis pathway. The cell membrane and elements of the cytoskeleton are damaged [3][6].
Oxidative stress generates the production of ATP metabolites, accompanied by a sharp increase in the production of superoxide anion radical (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (-OH). These initiate circulatory disturbances and a cascade of inflammatory reactions. Mitochondrial membrane morphology and permeability are altered. Damage to the mitochondrial respiratory chain leads to inhibition of oxidative phosphorylation and disruption of energy metabolism. Free oxygen radicals formed in mitochondria cause damage to DNA and organelle proteins and peroxidation of membrane lipids, consequently leading to cell death by apoptosis or necrosis [7][8].
Recent years have seen an increase in research into developing organ perfusion and preservation techniques to minimize ischemia-related graft damage and improve marginal donor utilization rates. The optimization of organ preservation techniques, i.e., static cold storage (SCS; 0–4 °C), hypothermic machine perfusion (HMP, 0–4 °C), subnormothermic machine perfusion (SNMP; 20–30 °C), normothermic machine perfusion (NMP; 32–37 °C), and the introduction of novel substances into preservation fluid compositions, can significantly improve organ function before transplantation. A relatively new generation of organ preservation technology is NMP, which allows blood flow in the organ to be reconstructed and its vital functions to be assessed outside the human body. Transplant rejection rates using this method are 50% lower compared to static cold storage [9].
Modifying the composition of the preservation fluids currently used may improve graft function and increase the likelihood of transplantation success. The modified fluid is expected to extend the period of safe liver storage in the peri-transplantation period and to increase the pool of organs for transplantation with livers from marginal donors.

2. Strategies Based on Modifications of Preservative Solutions with Antioxidants

Transplant fluids provide the environment in which organs are stored during the peri-transplantation period. They extend the ischemic period of the graft and prevent the development of damage during this time. Preserving the optimal vital functions of the organ improves its function in the subsequent postoperative period. The development of an optimal preservative fluid is an important element of transplant success. The substances contained in it should have a multidirectional effect, including anti-inflammatory and cytoprotective effects, which will increase the effectiveness of the transplants performed. Commercially available preservative fluids have been discussed in detail by me in previous publications [10][11][12][13]. Studies indicate that UW (University of Wisconsin), HTK (histidine–tryptophan–ketoglutarate), and IGL-1 (Institut Georges Lopez-1) are the most commonly used in liver transplantation [14]. Antioxidants are important components of organ perfusion and preservation fluids. An analysis of the available literature (Table 1 and Table 2) indicates that the challenge is to develop a preservative fluid formulation for effective liver preservation in which the antioxidant is compatibility with the other ingredients, demonstrates efficacy and safety of use, and does not complicate the manufacturing process.
Table 1. Studies on the effectiveness of supplementing preservative fluids with antioxidants. Basic research.
Table 2. Studies on the effectiveness of supplementing preservative fluids with antioxidants. Preclinical and clinical studies.

References

  1. Bilzer, M.; Gerbes, A.L. Preservation injury of the liver: Mechanisms and novel therapeutic strategies. J. Hepatol. 2000, 32, 508–515.
  2. Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia–reperfusion injury in liver transplantation—From bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89.
  3. Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver Ischemia and Reperfusion Injury: New Insights into Mechanisms of Innate-Adaptive Immune-Mediated Tissue Inflammation. Arab. Archaeol. Epigr. 2011, 11, 1563–1569.
  4. Mao, X.-L.; Cai, Y.; Chen, Y.-H.; Wang, Y.; Jiang, X.-X.; Ye, L.-P.; Li, S.-W. Novel Targets and Therapeutic Strategies to Protect Against Hepatic Ischemia Reperfusion Injury. Front. Med. 2022, 8, 757336.
  5. Marzi, I.; Rucker, M.; Walcher, F.; Takei, Y. Endothelin-1 is involved in hepatic sinusoidal vasoconstriction after ischemia and reperfusion. Transpl. Int. 1994, 7 (Suppl. 1), S503–S506.
  6. Theruvath, T.P.; Snoddy, M.C.; Zhong, Z.; Lemasters, J.J. Mitochondrial permeability transition in liver ischemia and reperfusion: Role of c-Jun N-terminal kinase 2. Transplantation 2008, 85, 1500–1504.
  7. Liu, Y.; Lu, T.; Zhang, C.; Xu, J.; Xue, Z.; Busuttil, R.W.; Xu, N.; Xia, Q.; Kupiec-Weglinski, J.W.; Ji, H. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. J. Hepatol. 2019, 71, 719–730.
  8. Hu, C.; Zhao, L.; Zhang, F.; Li, L. Melatonin and its protective role in attenuating warm or cold hepatic ischaemia/reperfusion injury. Cell. Prolif. 2021, 54, e13021.
  9. Del Turco, S.; Cappello, V.; Tapeinos, C.; Moscardini, A.; Sabatino, L.; Battaglini, M.; Melandro, F.; Torri, F.; Martinelli, C.; Babboni, S.; et al. Cerium oxide nanoparticles administration during machine perfusion of discarded human livers: A pilot study. Liver Transpl. 2022, 28, 1173–1185.
  10. Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Tips for optimizing organ preservation solutions. Acta Biochim. Pol. 2018, 65, 9–15.
  11. Ostróżka-Cieślik, A.; Dolińska, B. Pharmacological benefits and risk of using hormones in organ perfusion and preservation solutions in the aspect of minimizing hepatic ischemia-reperfusion injury during storage. BioMed Res. Int. 2019, 2019, 6467134.
  12. Ostróżka-Cieślik, A.; Dolińska, B. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature. Molecules 2020, 25, 2185.
  13. Ostróżka-Cieślik, A. The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int. J. Mol. Sci. 2022, 23, 3141.
  14. Mangus, A.E.; Kubal, C.A.; Ekser, B.; Mihaylov, P.; Lutz, A.J.; Fridell, J.A.; Mangus, R.S. Deceased Donor Flush Volume Similar for Histidine-Tryptophan-Ketoglutarate and University of Wisconsin at a Single US Organ Procurement Organization: Adult and Pediatric Data. Transplant. Proc. 2023, 55, 2016–2022.
  15. Lauschke, H.; Kötting, M.; Akbar, S.; Minor, T. Use of Taurine as Antioxidant in Resuscitating Livers from Non-Heart-Beating Donors by Gaseous Oxygen Persufflation. J. Investig. Surg. 2003, 16, 7–11.
  16. Minor, T.; Yamaguchi, T.; Isselhard, W. Effects of Taurine on Liver Preservation in UW Solution with Consecutive Ischemic Rewarming in the Isolated Perfused Rat Liver. Transpl. Int. 1995, 8, 174–179.
  17. Bardallo, R.G.; Company-Marin, I.; Folch-Puy, E.; Roselló-Catafau, J.; Panisello-Rosello, A.; Carbonell, T. PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants 2022, 11, 158.
  18. Quintana, A.; Rodriguez, J.; Scandizzi, A.; Guibert, E. Effect of S- nitrosoglutathione (GSNO) added to the University of Wisconsin solution (UW): I) Morphological alteration during cold preservation/reperfusion of rat liver. Int. J. Surg. Investig. 2001, 2, 401–411.
  19. Quintana, A.B.; Lenzi, H.L.; Almada, L.L.; Scandizzi, A.L.; Furno, G.; Rodriguez, J.V.; Guibert, E.E. Effect of S-nitrosoglutathione (GSNO) added to the University of Wisconsin solution (UW): II) Functional response to cold preservation/reperfusion of rat liver. Ann. Hepatol. 2002, 1, 183–191.
  20. Quintana, A.B.; Rodriguez, J.V.; Lenzi, H.L.; Guibert, E.E. Effect of S-nitrosoglutathione (GSNO) added to the University of Wisconsin Solution (UW): Mast cell degranulation during normothermic reperfusion. Ann. Hepatol. 2004, 3, 113.
  21. Minor, T.; Kötting, M. Gaseous oxygen for hypothermic preservation of predamaged liver grafts: Fuel to cellular homeostasis or radical tissue alteration? Cryobiology 2000, 40, 182–186.
  22. Srinivasan, P.K.; Yagi, S.; Nagai, K.; Afify, M.; Hata, K.; Uemoto, S.; Tolba, R.H. Impact of oxygen free radicals in rat partial liver transplantation. J. Surg. Res. 2014, 191, 469–475.
  23. Scherer de Fraga, R.; Camacho, V.R.; Souza, G.F.; Cerski, C.T.; de Oliveira, J.R.; de Oliveira, M.G.; Alvares-da-Silva, M.R. S-nitroso-n-acetylcysteine: A promising drug for early ischemia/reperfusion injury in rat liver. Transpl. Proc. 2010, 42, 4491–4495.
  24. Kerkweg, U.; Li, T.; de Groot, H.; Rauen, U. Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: The central role of chelatable iron. Hepatology 2002, 35, 560–567.
  25. Jain, S.; Lee, S.H.; Korneszczuk, K.; Culberson, C.R.; Southard, J.H.; Berthiaume, F.; Zhang, J.X.; Clemens, M.G.; Lee, C.Y. Improved preservation of warm ischemic livers by hypothermic machine perfusion with supplemented University of Wisconsin solution. J. Investig. Surg. 2008, 21, 83–91.
  26. Vreugdenhil, P.K.; Rankin, M.A.; Southard, J.H. Cold storage sensitizes hepatocytes to oxidative stress injury. Transpl. Int. 1997, 10, 379–385.
  27. Wu, S.; Wohlschlaeger, J.; de Groot, H.; Rauen, U. Evaluation of a modified HTK solution containing the new iron chelator LK 614 in an isolated rat liver perfusion model. J. Investig. Surg. Off. J. Acad. Surg. Res. 2009, 22, 340–347.
  28. Stegemann, J.; Hirner, A.; Rauen, U.; Minor, T. Use of a new modified HTK solution for machine preservation of marginal liver grafts. J. Surg. Res. 2010, 160, 155–162.
  29. Cherkashina, D.V.; Sosimchik, I.A.; Semenchenko, O.A.; Volina, V.V.; Petrenko, A.Y. Mitochondria-targeted plastoquinone derivative SkQ(1) decreases ischemia-reperfusion injury during liver hypothermic storage for transplantation. Biochemistry 2011, 76, 1022–1029.
  30. Wieland, E.; Schütz, E.; Armstrong, V.W.; Küthe, F.; Heller, C.; Oellerich, M. Idebenone protects hepatic microsomes against oxygen radical-mediated damage in organ preservation solutions. Transplantation 1995, 60, 444–450.
  31. Kondo, Y.; Ishitsuka, Y.; Kadowaki, D.; Fukumoto, Y.; Miyamoto, Y.; Irikura, M.; Hirata, S.; Sato, K.; Maruyama, T.; Hamasaki, N.; et al. Phosphoenolpyruvate, a glycolytic intermediate, as a cytoprotectant and antioxidant in ex-vivo cold-preserved mouse liver: A potential application for organ preservation. J. Pharm. Pharmacol. 2013, 65, 390–401.
  32. Johnston, T.D.; Reddy, K.S.; Wu, G.; Chien, C.; Nagabhusan, M.; Ranjan, D. Organ preservation by curcumin+Euro-Collins is equivalent to univ. of Wisconsin solution in both in-vivo and ex-vivo models. Transplantation 1999, 67, S652.
  33. Chen, C.; Johnston, T.D.; Wu, G.; Ranjan, D. Curcumin has potent liver preservation properties in an isolated perfusion model. Transplantation 2006, 82, 931–937.
  34. McNally, S.J.; Harrison, E.M.; Ross, J.A.; Garden, O.J.; Wigmore, S.J. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation 2006, 81, 623–626.
  35. Kato, F.; Gochi, M.; Kawagoe, T.; Yotsuya, S.; Matsuno, N. The protective effects of quercetin and sucrose on cold preservation injury in vitro and in vivo. Organ Biol. 2020, 27, 207–215.
  36. Ligeret, H.; Brault, A.; Vallerand, D.; Haddad, Y.; Haddad, P.S. Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 2008, 115, 507–514.
  37. Chiu, J.H.; Wang, J.C.; Lui, W.Y.; Wu, C.W.; Hong, C.Y. Effect of magnolol on in vitro mitochondrial lipid peroxidation and isolated cold-preserved warm-reperfused rat livers. J. Surg. Res. 1999, 82, 11–16.
  38. Gdara, N.B.; Belgacem, A.; Khemiri, I.; Mannai, S.; Bitri, L. Protective Effects of Phycocyanin on Ischemia/Reperfusion Liver Injuries. Biomed. Pharmacother. 2018, 102, 196–202.
  39. Slim, C.; Zaouali, M.A.; Nassrallah, H.; Ammar, H.H.; Majdoub, H.; Bouraoui, A.; Abdennebi, H.B. Protective potential effects of fucoidan in hepatic cold ischemia-rerfusion injury in rats. Int. J. Biol. Macromol. 2020, 155, 498–507.
  40. Bae, C.; Pichardo, E.M.; Huang, H.; Henry, S.D.; Guarrera, J.V. The benefits of hypothermic machine perfusion are enhanced with Vasosol and α-tocopherol in rodent donation after cardiac death livers. Transplant. Proc. 2014, 46, 1560–1566.
  41. Tolba, R.H.; Pütz, U.; Decker, D.; Dombrowski, F.; Lauschke, H. L-carnitine ameliorates abnormal vulnerability of steatotic rat livers to cold ischemic preservation. Transplantation 2003, 76, 1681–1686.
  42. Coskun, A.; Gunal, O.; Sahin, I.; Aslaner, A.; Yildirim, U.; Yavuz, O. Does l-carnitine have any effect on cold preservation injury of non-fatty liver in the University of Wisconsin solution? Hepatol. Res. 2007, 37, 656–660.
  43. Ben Mosbah, I.; Rosello-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Ben Abdennebi, H.; Boillot, O.; Rodes, J.; et al. Addition of carvedilol to university wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transplant. 2010, 16, 163–171.
  44. Ben Mosbah, I.; Casillas-Ramirez, A.; Xaus, C.; Serafin, A.; Rosello-Catafau, J.; Peralta, C. Trimetazidine: Is it a promising drug for use in steatotic grafts? World J. Gastroenterol. 2006, 12, 908–914.
  45. Ben Mosbah, I.; Massip-Salcedo, M.; Fernandez-Monteiro, I.; Xaus, C.; Bartrons, R.; Boillot, O.; Rosello-Catafau, J.; Peralta, C. Addition of adenosine monophosphate-activated protein kinase activators to university of wisconsin solution: A way of protecting rat steatotic livers. Liver Transplant. 2007, 13, 410–425.
  46. Zaouali, M.A.; Ben Mosbah, I.; Boncompagni, E.; Ben Abdennebi, H.; Mitjavila, M.T.; Bartrons, R.; Freitas, I.; Rimola, A.; Rosello-Catafau, J. Hypoxia inducible factor-1alpha accumulation in steatotic liver preservation: Role of nitric oxide. World J. Gastroenterol. 2010, 16, 3499–3509.
  47. Zaouali, M.A.; Boncompagni, E.; Reiter, R.J.; Bejaoui, M.; Freitas, I.; Pantazi, E.; Folch-Puy, E.; Abdennebi, H.B.; Garcia-Gil, F.A.; Rosello-Catafau, J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: A role for melatonin and trimetazidine cocktail. J. Pineal Res. 2013, 55, 65–78.
  48. Zaouali, M.A.; Panisello, A.; Lopez, A.; Castro, C.; Folch, E.; Carbonell, T.; Rolo, A.; Palmeira, C.M.; Garcia-Gil, A.; Adam, R.; et al. GSK3β and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. Int. J. Mol. Sci. 2017, 18, 591.
  49. Zaouali, M.A.; Panisello, A.; Lopez, A.; Folch, E.; Castro-Benitez, C.; Adam, R.; Rosello-Catafau, J. Cross-talk between sirtuin 1 and high-mobility box 1 in steatotic liver graft preservation. Transplant. Proc. 2017, 49, 765–769.
  50. Pantazi, E.; Zaouali, M.A.; Bejaoui, M.; Folch-Puy, E.; Ben Abdennebi, H.; Varela, A.T.; Rolo, A.P.; Palmeira, C.M.; Rosello-Catafau, J. Sirtuin 1 in rat orthotopic liver transplantation: An igl-1 preservation solution approach. World J. Gastroenterol. 2015, 21, 1765–1774.
  51. Kozaki, K.; Egawa, H.; Bermudez, L.; Keefe, E.B.; So, S.K.; Esquivel, C.O. Effects of pentoxifylline pretreatment on Kupffer cells in rat liver transplantation. Hepatology 1995, 21, 1079–1082.
  52. Arnault, I.; Bao, Y.M.; Sebagh, M.; Anjo, A.; Dimicoli, J.L.; Lemoine, A.; Delvart, V.; Adam, R. Beneficial effect of pentoxifylline on microvesicular steatotic livers submitted to a prolonged cold ischemia. Transplantation 2003, 76, 77–83.
  53. Asong-Fontem, N.; Panisello-Rosello, A.; Lopez, A.; Imai, K.; Zal, F.; Delpy, E.; Rosello-Catafau, J.; Adam, R. A Novel Oxygen Carrier (M101) Attenuates Ischemia-Reperfusion Injuries during Static Cold Storage in Steatotic Livers. Int. J. Mol. Sci. 2021, 22, 8542.
  54. Hide, D.; Ortega-Ribera, M.; Fernández-Iglesias, A.; Fondevila, C.; Salvadó, M.J.; Arola, L.; García-Pagán, J.C.; Mancini, A.; Bosch, J.; Gracia-Sancho, J. A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischaemia and reperfusion injury. Clin. Sci. 2014, 127, 527–537.
  55. Aliakbarian, M.; Nikeghbalian, S.; Ghaffaripour, S.; Bahreini, A.; Shafiee, M.; Rashidi, M.; Rajabnejad, Y. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant. Exp. Clin. Transplant. 2017, 15, 432–436.
  56. Aghdaie, H.M.; Azarpira, N.; Esfandiari, E.; Kaviani, M.; Golbabapour, S.; Shamsaeefar, A.; Kazemi, K.; Dehghani, M.; Bahador, A.; Salahi, H.; et al. The Effects of Cold Preservation Solutions Supplemented with UDCA and α-Lipoic Acid on the Viability and Function of Isolated Human Hepatocytes. Int. J. Organ Transplant. Med. 2019, 10, 108–113.
  57. Otani, M.; Ishii, D.; Iwata, H.; Satake, Y.; Okada, Y.; Toriumi, A.; Imamura, M.; Nishikawa, Y.; Matsuno, N. Preservation Efficacy of a Quercetin and Sucrose Solution for Warm Ischemically Damaged Porcine Liver Grafts. Transplant. Proc. 2023, 55, 2212–2217.
  58. Qing, D.K.; Dong, J.H.; Han, B.L.; Chen, X.R. Cold preservation of pig liver grafts with warm ischemia and pentoxifylline-UW solution. Arch. Med. Res. 2006, 37, 449–455.
  59. Alix, P.; Val-Laillet, D.; Turlin, B.; Mosbah, I.B.; Burel, A.; Bobillier, E.; Bendavid, C.; Delpy, E.; Zal, F.; Corlu, A. Adding the Oxygen Carrier M101 to a Cold-Storage Solution could be an Alternative to HOPE for Liver Graft Preservation. JHEP Rep. 2020, 2, 100119.
More
Information
Subjects: Transplantation
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 61
Revisions: 2 times (View History)
Update Date: 08 Feb 2024
1000/1000