Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1367 word(s) 1367 2020-12-15 08:15:21

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Tang, P. Chromosome 4. Encyclopedia. Available online: https://encyclopedia.pub/entry/4968 (accessed on 25 June 2024).
Tang P. Chromosome 4. Encyclopedia. Available at: https://encyclopedia.pub/entry/4968. Accessed June 25, 2024.
Tang, Peter. "Chromosome 4" Encyclopedia, https://encyclopedia.pub/entry/4968 (accessed June 25, 2024).
Tang, P. (2020, December 24). Chromosome 4. In Encyclopedia. https://encyclopedia.pub/entry/4968
Tang, Peter. "Chromosome 4." Encyclopedia. Web. 24 December, 2020.
Chromosome 4
Edit

Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 4, one copy inherited from each parent, form one of the pairs.

chromosomes & mtDNA

1. Introduction

Chromosome 4 spans about 191 million DNA building blocks (base pairs) and represents more than 6 percent of the total DNA in cells.

Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 4 likely contains 1,000 to 1,100 genes that provide instructions for making proteins. These proteins perform a variety of different roles in the body.

2. Health Conditions Related to Chromosomal Changes

2.1. Facioscapulohumeral muscular dystrophy

Facioscapulohumeral muscular dystrophy is caused by genetic changes involving the long (q) arm of chromosome 4. This condition is characterized by muscle weakness and wasting (atrophy) that worsens slowly over time. It results from changes in a region of DNA known as D4Z4, located near the end of the chromosome at a position described as 4q35. The D4Z4 region consists of 11 to more than 100 repeated segments, each of which is about 3,300 DNA base pairs (3.3 kb) long. The entire D4Z4 region is normally hypermethylated, which means that it has a large number of methyl groups (consisting of one carbon atom and three hydrogen atoms) attached to the DNA. Facioscapulohumeral muscular dystrophy results when the region is hypomethylated, with too few methyl groups attached. In facioscapulohumeral muscular dystrophy type 1 (FSHD1), hypomethylation occurs because the D4Z4 region is abnormally shortened (contracted), containing between 1 and 10 repeats instead of the usual 11 to 100 repeats. In facioscapulohumeral muscular dystrophy type 2 (FSHD2), hypomethylation most often results from mutations in a gene called SMCHD1, which normally hypermethylates the D4Z4 region.

The segment of the D4Z4 region closest to the end of chromosome 4 contains a gene called DUX4. Hypermethylation of the D4Z4 region normally keeps the DUX4 gene turned off (silenced) in most adult cells and tissues. In people with facioscapulohumeral muscular dystrophy, hypomethylation of the D4Z4 region prevents the DUX4 gene from being silenced in cells and tissues where it is usually turned off. Although little is known about the function of the DUX4 gene when it is turned on (active), researchers believe that it influences the activity of other genes, particularly in muscle cells. It is unknown how abnormal activity of the DUX4 gene damages or destroys these cells, leading to progressive muscle weakness and atrophy.

The DUX4 gene is located next to a regulatory region of DNA known as a pLAM sequence, which is necessary for the production of the DUX4 protein. Some copies of chromosome 4 have a functional pLAM sequence, while others do not. Copies of chromosome 4 with a functional pLAM sequence are described as 4qA or "permissive." Those without a functional pLAM sequence are described as 4qB or "non-permissive." Without a functional pLAM sequence, no DUX4 protein is made. Because there are two copies of chromosome 4 in each cell, individuals may have two "permissive" copies of chromosome 4, two "non-permissive" copies, or one of each. Facioscapulohumeral muscular dystrophy can only occur in people who have at least one "permissive" copy of chromosome 4. Whether an affected individual has a contracted D4Z4 region or a SMCHD1 gene mutation, the disease results only if a functional pLAM sequence is also present to allow DUX4 protein to be produced.

2.2. PDGFRA-associated chronic eosinophilic leukemia

PDGFRA-associated chronic eosinophilic leukemia is caused by genetic abnormalities that involve the PDGFRA gene, a gene found on chromosome 4. This condition is a type of blood cell cancer characterized by an increased number of eosinophils, a type of white blood cell involved in allergic reactions.

The PDGFRA gene abnormalities are somatic mutations, which are mutations acquired during a person's lifetime that are present only in certain cells. The most common of these abnormalities is a deletion of genetic material from chromosome 4 that removes approximately 800 DNA building blocks (nucleotides) and brings together parts of two genes, FIP1L1 and PDGFRA, creating the FIP1L1-PDGFRA fusion gene. Occasionally, through mechanisms other than deletion, genes other than FIP1L1 are fused with the PDGFRA gene. Rarely, mutations that change single DNA building blocks in the PDGFRA gene (point mutations) cause this condition.

The protein produced from the FIP1L1-PDGFRA fusion gene (as well as other PDGFRA fusion genes) has the function of the PDGFRA protein, which stimulates signaling pathways inside the cell that control many important cellular processes, such as cell growth and division (proliferation) and cell survival. Unlike the normal PDGFRA protein, however, the fusion protein is constantly turned on (constitutively activated), which means the cells are always receiving signals to proliferate. Similarly, point mutations in the PDGFRA gene can result in a constitutively activated PDGFRA protein. When the FIP1L1-PDGFRA fusion gene or point mutations in the PDGFRA gene occur in blood cell precursors, the growth of eosinophils (and occasionally other blood cells) is poorly controlled, leading to PDGFRA-associated chronic eosinophilic leukemia. It is unclear why eosinophils are preferentially affected by this genetic change.

2.3. Wolf-Hirschhorn syndrome

Wolf-Hirschhorn syndrome is caused by a deletion of genetic material near the end of the short (p) arm of chromosome 4 at a position described as 4p16.3. The signs and symptoms of this condition are related to the loss of multiple genes from this part of the chromosome. The size of the deletion varies among affected individuals; studies suggest that larger deletions tend to result in more severe intellectual disability and physical abnormalities than smaller deletions.

The region of chromosome 4 that is deleted most often in people with Wolf-Hirschhorn syndrome is known as Wolf-Hirschhorn syndrome critical region 2 (WHSCR-2). This region contains several genes, some of which are known to play important roles in early development. A loss of these genes leads to developmental delay, a distinctive facial appearance, and other characteristic features of the condition. Scientists are working to identify additional genes at the end of the short arm of chromosome 4 that contribute to the characteristic features of Wolf-Hirschhorn syndrome.

2.4. Other chromosomal conditions

Some deletions of genetic material from the short (p) arm of chromosome 4 do not involve the critical region WHSCR-2. These deletions cause signs and symptoms that are distinct from those of Wolf-Hirschhorn syndrome, including mild intellectual disability and, in some cases, rapid (accelerated) growth. People with this type of deletion usually do not have seizures.

Trisomy 4 occurs when cells have three copies of chromosome 4 instead of the usual two copies. Full trisomy 4, which occurs when all of the body's cells contain an extra copy of chromosome 4, is not compatible with life. A similar but somewhat less severe condition called mosaic trisomy 4 occurs when only some of the body's cells have an extra copy of chromosome 4. The signs and symptoms of mosaic trisomy 4 vary widely and can include heart defects, abnormalities of the fingers and toes, and other birth defects. Mosaic trisomy 4 is very rare; only a few cases have been reported.

Other changes in the number or structure of chromosome 4 can have a variety of effects including delayed growth and development, intellectual disability, distinctive facial features, heart defects, and other medical problems. Changes involving chromosome 4 include an extra piece of the chromosome in each cell (partial trisomy 4), a missing segment of the chromosome in each cell (partial monosomy 4), and a circular structure called a ring chromosome 4. Ring chromosomes occur when a chromosome breaks in two places and the ends of the chromosome arms fuse together to form a circular structure.

2.5. Cancers

Changes in chromosome 4 have been identified in several types of human cancer. These genetic changes are somatic, which means they are acquired during a person's lifetime and are present only in certain cells. For example, rearrangements (translocations) of genetic material between chromosome 4 and several other chromosomes have been associated with leukemias, which are cancers of blood-forming cells.

A specific translocation involving chromosome 4 and chromosome 14 is commonly found in multiple myeloma, which is a cancer that starts in cells of the bone marrow. The translocation, which is written as t(4;14)(p16;q32), abnormally fuses the WHSC1 gene on chromosome 4 with part of another gene on chromosome 14. The fusion of these genes overactivates WHSC1, which appears to promote the uncontrolled growth and division of cancer cells.

References

  1. Bergemann AD, Cole F, Hirschhorn K. The etiology of Wolf-Hirschhorn syndrome. Trends Genet. 2005 Mar;21(3):188-95. Review.
  2. Buitenhuis M, Verhagen LP, Cools J, Coffer PJ. Molecular mechanisms underlyingFIP1L1-PDGFRA-mediated myeloproliferation. Cancer Res. 2007 Apr 15;67(8):3759-66.
  3. Chen CP, Chern SR, Lee CC, Chang TY, Wang W, Tzen CY. Clinical, cytogenetic,and molecular findings of prenatally diagnosed mosaic trisomy 4. Prenat Diagn.2004 Jan;24(1):38-44. Review.
  4. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, ClarkJ, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL,Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, KantarjianH, Marynen P, Coutre SE, Stone R, Gilliland DG. A tyrosine kinase created byfusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib inidiopathic hypereosinophilic syndrome. N Engl J Med. 2003 Mar 27;348(13):1201-14.
  5. Goldfrank D, Schoenberger E, Gilbert F. Disease genes and chromosomes: diseasemaps of the human genome. Chromosome 4. Genet Test. 2003 Winter;7(4):351-72.
  6. Hayne CC, Winer E, Williams T, Chaves F, Khorsand J, Mark HF. Acutelymphoblastic leukemia with 4;11 translocation analyzed by a multi-modal strategyof conventional cytogenetics, FISH, morphology, flow cytometry and moleculargenetics, and review of the literature. Exp Mol Pathol. 2006 Aug;81(1):62-71.
  7. Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P,Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, DelehauntyKD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, AliJ, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L,Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M,Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W,Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J,Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S,Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L,Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, CookLL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD,Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD,Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH,Wilson RK. Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31.
  8. Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, LarrattLM, Mant MJ, Reiman T, Belch AR, Pilarski LM. Overexpression of transcriptsoriginating from the MMSET locus characterizes all t(4;14)(p16;q32)-positivemultiple myeloma patients. Blood. 2005 May 15;105(10):4060-9.
  9. Keats JJ, Reiman T, Belch AR, Pilarski LM. Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leuk Lymphoma. 2006Nov;47(11):2289-300. Review.
  10. Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camaño P, Dauwerse JG,Snider L, Straasheijm KR, van Ommen GJ, Padberg GW, Miller DG, Tapscott SJ, TawilR, Frants RR, van der Maarel SM. A unifying genetic model for facioscapulohumeralmuscular dystrophy. Science. 2010 Sep 24;329(5999):1650-3. doi:10.1126/science.1189044.
  11. Lundin C, Zech L, Sjörs K, Wadelius C, Annerén G. Trisomy 4q syndrome:presentation of a new case and review of the literature. Ann Genet. 2002Apr-Jun;45(2):53-7. Review.
  12. South ST, Hannes F, Fisch GS, Vermeesch JR, Zollino M. Pathogenic significanceof deletions distal to the currently described Wolf-Hirschhorn syndrome critical regions on 4p16.3. Am J Med Genet C Semin Med Genet. 2008 Nov 15;148C(4):270-4.doi: 10.1002/ajmg.c.30188.
  13. Tawil R, van der Maarel SM, Tapscott SJ. Facioscapulohumeral dystrophy: thepath to consensus on pathophysiology. Skelet Muscle. 2014 Jun 10;4:12. doi:10.1186/2044-5040-4-12.
  14. Zollino M, Lecce R, Fischetto R, Murdolo M, Faravelli F, Selicorni A, Buttè C,Memo L, Capovilla G, Neri G. Mapping the Wolf-Hirschhorn syndrome phenotypeoutside the currently accepted WHS critical region and defining a new criticalregion, WHSCR-2. Am J Hum Genet. 2003 Mar;72(3):590-7.
  15. Zollino M, Murdolo M, Marangi G, Pecile V, Galasso C, Mazzanti L, Neri G. Onthe nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotypecorrelation analysis of 80 patients and literature review. Am J Med Genet C SeminMed Genet. 2008 Nov 15;148C(4):257-69. doi: 10.1002/ajmg.c.30190. Review.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 392
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 24 Dec 2020
1000/1000
Video Production Service