Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1244 2023-05-10 09:58:24 |
2 format correction -7 word(s) 1237 2023-05-11 05:39:26 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Gu, R.; Fan, S.; Wei, S.; Li, J.; Zheng, S.; Liu, G. Core Collections of Plant Genetic Resources. Encyclopedia. Available online: https://encyclopedia.pub/entry/44088 (accessed on 27 July 2024).
Gu R, Fan S, Wei S, Li J, Zheng S, Liu G. Core Collections of Plant Genetic Resources. Encyclopedia. Available at: https://encyclopedia.pub/entry/44088. Accessed July 27, 2024.
Gu, Rui, Shaohui Fan, Songpo Wei, Jiarui Li, Shihui Zheng, Guanglu Liu. "Core Collections of Plant Genetic Resources" Encyclopedia, https://encyclopedia.pub/entry/44088 (accessed July 27, 2024).
Gu, R., Fan, S., Wei, S., Li, J., Zheng, S., & Liu, G. (2023, May 10). Core Collections of Plant Genetic Resources. In Encyclopedia. https://encyclopedia.pub/entry/44088
Gu, Rui, et al. "Core Collections of Plant Genetic Resources." Encyclopedia. Web. 10 May, 2023.
Core Collections of Plant Genetic Resources
Edit

The core collection is a small subset that minimizes genetic redundancy while preserving the maximum genetic diversity of the entire population. Research on the core collection is crucial for the efficient management and utilization of germplasm resources.

germplasm resources core collection genetic diversity

1. What Is a Core Collection?

Germplasm resources serve as a crucial material basis for genetic research and help in the identification and utilization of genes and traits that are of economic and ecological importance [1]. Therefore, the preservation and utilization of germplasm resources are of significant importance for the development of new crop varieties, and a large number of germplasm banks have been established [2]. However, due to their vast amount, diverse structure and incomplete information on germplasm resources, the available diversity that has been collected may not be fully and effectively utilized [3][4][5].
To obtain a germplasm bank that is both practical and representative, Australian scholars Brown [5] and Frankel [6] proposed the concept of core collection in 1984. Core collection refers to selecting a part of the entire germplasm resource through certain methods with the goal of representing the genetic diversity of the entire germplasm resource with a minimum number of resources. The theoretical basis supporting this concept is the theory of neutral mutations and the hierarchical structure model of genetic diversity [7]. A good core collection should have the following characteristics: representativeness, low redundancy, manageability, data completeness, and usability [8]. A core collection provides more reliable data and samples, makes it easier to optimize genotype/molecular marker-phenotype association studies, improves the utilization efficiency of the germplasm, and accelerates the breeding process [9][10][11].

2. The Progress of Core Collection

In considering world experience and the formation of core collections that the literature reveals, researchers focus on the following questions:
  • Have core collections been formed for a diversity of plants?
  • How can researchers effectively construct a representative core collection?
  • How well can the core collection be utilized?
Our responses to these questions are summarized below.

3. Diversity of Core Collections

Core collections preserve the genetic diversity of the original population as much as possible, which promotes the effective use and protection of germplasm resources [4][5][6]. Based on this, many core collection research studies have been conducted both domestically and internationally. Researchers summarizes the development and research of core collections of 146 plant species over the most recent 10 years, which are listed in Table 1 below. The table shows that core collections have been developed mainly in economic crops and fruit trees; meanwhile, forages have been recently exploited for core collection establishment, including Buchloe dactyloides (Nutt.) [12], Cynodon Rich. [13] and Bromus inermis Leyss. [14]. However, core collections of endemic afforestation tree species are still limited, although some have been reported, such as those of Cunninghamia lanceolata (Lamb.) Hook. [15], Robinia pseudoacacia L. [16], Populus tomentosa Carrière. [17], Pinus massoniana Lamb. [18], etc. In addition, only a few of these studies have focused on spice crops, and the core collection that has been constructed is dominated by Santalum album L. [19].
Table 1. List of plant species that have been core collection-developed in recent years.
Species Category Name
Grain
crops
Cereals maize [20][21][22][23], sorghum [24], coix [25], hulless barley [26], rice [27], wheat [9][28], oat [29], buckwheat [30], pearl millet [31], foxtail millet [32], peanut [33]
Potatos sweet potato [34], cassava [35]
Pulses chickpea [36], Pigeonpea [37], lima bean [38], soybean [39][40], rice bean [41], commom bean [42], faba bean [43], mung bean [44]
Horticultural
crops
Vegetables cauliflower [45], rapeseed [46], Cabbage [47], tomato [48][49], spinach [50], amaranth [51], bitter gourd [52], Jerusalem artichoke [53], yam [54], cucumber [55], pumpkin [56], white gourd [57], pepper [58], sweet pepper [59], eggplant [60], radish [61], Turnip [62], oyster mushroom [63], perilla [64], Pyropia haitanensis [65]
Fruits pricot [66][67][68][69], pear [70][71], jujube [72][73][74], grape [75], melon [76], watermelon [77], kiwifruit [78], pomegranate [79], litchi [80][81], olive [82], apple [83][84][85], peach [86], cherimoya [87], fig [88], sweet cherry [89], pomelo [90], persimmon [91], sugarcane [92]
Ornamental
plants
Cymbidium ensifolium [93], Chrysanthemum morifolium [94][95], Prunus mume [96], Chimonanthus praecox [97], Rosa rugosa [98], Lilium brownii [99], Paeonia suffruticosa [100], Lagerstroemia indica [101], Helianthus annuus [102], Sophora moorcroftiana [103]
Herbs Fallopia multiflora [104], Astragalus [105], Scutellaria baicalensis [106], Angelica biserrata [107], Glycyrrhiza [1], Cornus officinalis [108], Dalbergia Odorifera [109]
Spice Santalum album [19]
Teas Guizhou tea [110], Chinese tea [111][112]
Beverages Coffee [113], Theobroma cacao [114]
Fibers cotton [115], upland cotton [116], island cotton [117], ramie [118]
Oilseeds safflower [119], sesame [120]
Forages Buchloe dactyloides [12], Cynodon [13], Medicago truncatula [121], Bromus inermis [14]
Trees Catalpa bungei [122], Catalpa fargesii [123], Saccharum spontaneum [124], Populus deltoides [125], Populus tomentosa [17], Cinnamomum camphora [126], Phoebe bournei [127], Robinia pseudoacacia [16], Torreya grandis [128], Tetracentron sinense [129], Xanthoceras sorbifolia [130], schima superba [131], Sapium sebiferum [132], Fraxinus chinensis [133], Eucommia ulmoides [134], Saccharum arundinaceum [135], Corylus avellana [136], Juglans regia [137][138], Betula platyphylla [139], Betula luminifera [140], Sinojackia huangmeiensis [141], Castanopsis hystrix [142], Morus alba [143], Castanea mollissima [144], Castanea sativa [145], Cunninghamia lanceolata [15], Cryptomeria japonica [146], Eucalyptus cloeziana [147], Eucalyptus urophylla [148], Ceratonia siliqua [149], Argania spinosa [150], Pinus massoniana [18], Pinus yunnanensis [151], Ginkgo biloba [152], Akebia trifoliata [153], Camellia oleifera [154], Cornus wilsoniana [155]

4. Procedure of Constructing a Core Collection

The development of the core collection has been extensively studied from various perspectives, such as sampling strategies, core size determination, and analysis methods, among others. However, due to the wide variation in the growth habits and reproductive characteristics of various plants, there is no universal core collection construction method. Generally, the construction of the core collection mainly includes four steps: the collection and organization of data, the grouping of accessions, the determination of sampling strategies and the testing and evaluation of the core set [1][8].

5. Evaluation of Core Collection

While the core collection is constructed based on available data, the important question remains: does the core set accurately represent the diversity of the original population?
Brown proposed that the core collection should represent 70% or more of the trait characteristics and genetic variations of the entire germplasm [4]. To validate the effectiveness of the core collection, it should be evaluated from two aspects: firstly, to test the representativeness of the genetic diversity of the entire collection and, secondly, to assess its practicality in production [58]. Generally, at the molecular level, the main genetic diversity indices include the allele number (Na), effective allele number (Ne), Shannon’s information index (I), Nei’s genetic diversity index (H), polymorphism information content (PIC), observed heterozygosity (Ho) and expected heterozygosity (He) [156]; among these, allelic richness is considered the most relevant indicator. Maximizing allelic richness means preserving the germplasm resource with the most abundant genetic diversity. At the phenotypic level, the evaluation parameters include the mean difference percentage (MD), variance difference percentage (VD), coincidence rate of range (CR) and variation coefficient changing rate (VR) [8][68][156]. Usually, the core collection is considered representative only when the MD is less than 20%; the CR is more than 80% [156]. A lower value in MD and a higher value in VD, CR, and VR could be considered to indicate a more representative core collection [13][58]. In addition, principal component analysis (PCA) plots have been widely used to compare the distribution characteristics between the core collection and the initial population [13]. Moreover, correlation analysis is commonly conducted to infer whether the inherent relationship between traits in the original collection is well retained in the core group [13]. Recently, Odong et al. [8] proposed two new criteria based on genetic distance to evaluate the quality of the core collections. These criteria offer the advantage of simultaneously considering all variables describing the accessions and provide intuitive and interpretable results compared to the univariate criteria generally used in core collection evaluations. Additionally, after establishing a core collection, it is essential to establish a comprehensive management system for breeding, seed supply, and exchange as soon as possible to ensure the distribution, sharing, and effective utilization of the core set.
In short, the evaluation criteria of core collection should be variable, and flexible evaluation methods should be tried according to the new situation. The selection of the most suitable evaluation method should depend upon the purpose of core collections [8]. Moreover, core collection establishment is a dynamic process [147] that needs to be regularly updated by the addition of new entries and the removal of duplicates to improve representativeness and maintain dynamism [119].

References

  1. Liu, Y.L.; Geng, Y.P.; Xie, X.D.; Zhang, P.F.; Hou, J.L.; Wang, W. Core collection construction and evaluation of the genetic structure of Glycyrrhiza in China using markers for genomic simple sequence repeats. Genet. Resour. Crop Evol. 2020, 67, 1839–1852.
  2. Belaj, A.; del Carmen Dominguez-García, M.; Atienza, S.G.; Urdíroz, N.M.; De la Rosa, R.; Satovic, Z.; Martín, A.; Kilian, A.; Trujillo, I.; Valpuesta, V.; et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 2012, 8, 365–378.
  3. Van Hintum, T.J.L.; Brown, A.H.D.; Spillane, C.; Hodgkin, T. Core Collections of Plant Genetic Resources; IPGRI Technical Bulletin No. 3; International Plant Genetic Resources Institute: Rome, Italy, 2000.
  4. Brown, A.H.D. Core collections—A practical approach to genetic-resources management. Genome 1989, 31, 818–824.
  5. Brown, A.H.D. The case for core collections. In The Use of Plant Genetic Resources; Brown, A.H.D., Frankel, O.H., Marshal, D.R., Eds.; University Cambridge Press: Cambridge, UK, 1989; pp. 136–156.
  6. Frankel, O.H. Genetic perspectives of germplasm conservation. In Genetic Manipulation: Impact on Man and Society; Arber, W.K., Illmensee, K., Peacock, W.J., Starlinger, P., Ehrlich, S.D., Dagert, M., Romac, S., Michel, B., Levy, S.B., Goebel, W., et al., Eds.; Cambridge University Press: Cambridge, UK, 1984; pp. 161–170.
  7. Li, Z.C.; Zhang, H.L.; Cao, Y.S.; Qiu, Z.E.; Wei, X.H.; Tang, S.X.; Yu, P.; Wang, X.K. Studies on the sampling strategy for primary rice. Acta Agron. Sin. 2003, 29, 20–24.
  8. Odong, T.L.; Jansen, J.; van Eeuwijk, F.A.; van Hintum, T.J.L. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 2013, 126, 289–305.
  9. Balfourier, F.; Roussel, V.; Strelchenko, P.; Exbrayat-Vinson, F.; Sourdille, P.; Boutet, G.; Koenig, J.; Ravel, C.; Mitrofanova, O.; Beckert, M.; et al. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor. Appl. Genet. 2007, 11, 1265–1275.
  10. Richards, C.M.; Volk, G.M.; Reeves, P.A.; Reilley, A.A.; Henk, D.; Forsline, P.L.; Aldwinckle, H.S. Selection of stratified core sets representing wild apple (Malus sieversii). J. Am. Soc. Hortic. Sci. 2009, 134, 228–235.
  11. Razieh, M.; Mohammad, R.D.; Darab, H.; Mehrshad, Z.; Elisa, V.; Sabrina, M.; Fariborz, Z.N. Development of a core collection in Iranian walnut (Juglans regia L.) germplasm using the phenotypic diversity. Sci. Hortic. 2019, 249, 439–448.
  12. Jiang, M. Researches on Constructing Strategy of Core Germplasm Construction Based on Phenotype and Genetic Diversity of Buchloe dactyloides (Nutt.) Engelm. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2020.
  13. Huang, C.Q.; Long, T.; Bai, C.J.; Wang, W.Q.; Tang, J.; Liu, G.D. Establishment of a core collection of Cynodon based on morphological data. Trop. Grassl.-Forrajes Trop. 2020, 8, 203–213.
  14. Zhou, Y.C. Genetic Diversity Analysis and Construction of Core Germplasm in Bromus Inermis Leyss. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2020.
  15. Wu, H.; Duan, A.; Wang, X.; Chen, Z.; Zhang, X.; He, G.; Zhang, J. Construction of a Core Collection of Germplasms from Chinese Fir Seed Orchards. Forests 2023, 14, 305.
  16. Guo, Q.; Liu, J.; Li, J.K.; Cao, S.; Zhang, Z.J.; Zhang, J.T.; Zhang, Y.S.; Deng, Y.P.; Niu, D.S.; Su, L.Z.; et al. Genetic diversity and core collection extraction of Robinia pseudoacacia L. germplasm resources based on phenotype, physiology, and genotyping markers. Ind. Crops Prod. 2022, 178, 114627.
  17. Mao, X.H.; Zhu, S.L.; Li, S.W.; Hua, H.; Tian, S.Y.; Zhong, W.G.; Dong, Y.F.; An, X.M. Core germplasm construction of Populus tomentosa based on the fluorescent SSR markers. J. Beijing For. Univ. 2020, 42, 40–47. (In Chinese)
  18. Feng, Y.; Yang, Z.; Tan, J.; Li, H.; Chen, X. Selection of first generation nucleus population of Pinus massoniana in Guangxi. J. Northeast For. Univ. 2018, 46, 20–24.
  19. Shashidhara, G.; Hema, M.V.; Koshy, B.; Farooqi, A.A. Assessment of genetic diversity and identification of core collection in sandalwood germplasm using RAPDs. J. Hortic. Sci. Biotechnol. 2003, 78, 528–536.
  20. Li, R.; Shang, X.; Shang, C.S.; Chang, L.F.; Yan, L.; Bai, J.R. Core germplasm construction of Shanxi maize inbred line based on SSR markers. Seed 2021, 9, 72–76. (In Chinese)
  21. Chang, L.F.; Bai, J.R.; Li, R.; Zhang, C.Z.; Zhang, X.M.; Yang, R.J. Construction of a Core Collection of Sweet Corn Populations Based on SSR Markers. J. Maize Sci. 2018, 26, 40–49. (In Chinese)
  22. Li, Y.; Shi, Y.S.; Cao, Y.S.; Wang, T.Y. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet. Resour. Crop Evol. 2004, 51, 845–852.
  23. Ronaldo, R.C.; Glauco, V.M.; Cosme, D.C. Development of a Brazilian maize core collection. Genet. Mol. Biol. 2009, 32, 538–545.
  24. Li, M.; Qin, H.B.; Wang, Y.N.; Mu, Z.X.; Du, H.L. A Core Collection of Sorghum Landraces Formed by Taking Use of Agronomic Traits in Shanxi Province. J. Plant Genet. Resour. 2021, 22, 174–182. (In Chinese)
  25. Li, X.S.; Fu, Y.H.; Zhou, X.; Li, Q.; Liu, F.Z.; Yang, C.L.; Zhou, M.Q. Establishment of Coix lacryma-jobi L. Core Germplasm Collection Based on Phenotypic Characters. Chin. J. Trop. Crops 2020, 41, 669–675. (In Chinese)
  26. Yuan, H.J.; Zeng, X.Q.; Xu, Q.J.; Wang, Y.L.; Zhang, S.; Nyima, T.S. Genetic diversity of germplasm resources and core construction development in Hulless Barley. J. Triticeae Crops 2018, 38, 922–928. (In Chinese)
  27. Zhang, H.L.; Zhang, D.L.; Wang, M.X.; Sun, J.L.; Qi, Y.W.; Li, J.J.; Wei, X.H.; Han, L.Z.; Qiu, Z.E.; Tang, S.X.; et al. A core collection and mini core collection of Oryza sativa L. in China. Theor. Appl. Genet. 2011, 122, 49–61.
  28. Gao, X.F.; Zhou, Y.; Song, D.Y.; Li, J.X.; Chen, W.; Li, S.P. Construction of Core Collection of Chinese Aegilops tauschii Coss. Germplasm Resource Based on Spike Morphological Traits and Molecular Markers. J. Plant Genet. Resour. 2021, 22, 361–370. (In Chinese)
  29. Boczkowska, M.; Lapinski, B.; Kordulasinska, I.; Dostatny, D.F.; Czembor, J.H. Promoting the use of common oat genetic resources through diversity analysis and core collection construction. PLoS ONE 2016, 11, e0167855.
  30. Li, J.L.; Fan, Y.; Zhao, M.Y. Construction of Primary Core Collection of Buckwheat Germplasm Resources Based on Phenotypic Traits and SSR. J. Plant Genet. Resour. 2021, 22, 1240–1247. (In Chinese)
  31. Bhattacharjee, R.; Khairwal, I.S.; Bramel, P.J.; Reddy, K.N. Establishment of a pearl millet core collection based on geographical distribution and quantitative traits. Euphytica 2007, 155, 35–45.
  32. Choi, Y.M.; Kim, K.M.; Lee, S.; Oh, S.; Lee, M.C. Development of a core collection based on EST-SSR markers and phenotypic traits in foxtail millet . J. Crop Sci. Biotechnol. 2019, 21, 395–405.
  33. Upadhyaya, H.D.; Bramel, P.J.; Ortiz, R.; Singh, S. Developing a mini core of peanut for utilization of genetic resources. Crop Sci. 2002, 42, 2150–2156.
  34. Su, W.; Wang, L.; Lei, J.; Chai, S.; Liu, Y.; Yang, Y.; Yang, X.; Jiao, C. Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLoS ONE 2017, 12, e0172066.
  35. Oliveira, E.J.; Ferreira, C.F.; Santos, V.S.; Oliveira, G.A.F. Development of a cassava core collection based on single nucleotide polymorphism markers. Genet. Mol. Res. 2014, 13, 6472–6485.
  36. Upadhyaya, H.D.; Bramel, P.J.; Singh, S. Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci. 2001, 41, 206–210.
  37. Reddy, L.J.; Upadhyaya, H.D.; Gowda, C.L.L.; Singh, S. Development of core collection in pigeonpea using geographic and qualitativemorphological descriptors. Genet. Resour. Crop Evol. 2005, 52, M1049–M1056.
  38. Regina, L.F.G.; Marcones, F.C.; Alessandro, A.-P. A lima bean core collection based on molecular markers. Sci. Agric. 2020, 77, e20180140.
  39. Wang, L.X.; Guan, Y.; Guan, R.X.; Li, Y.; Ma, Y.; Dong, Z.; Liu, X.; Zhang, H.; Zhang, Y.; Liu, Z.; et al. Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica 2006, 151, 215–223.
  40. Jeong, N.; Kim, K.S.; Jeong, S.; Kim, J.Y.; Park, S.K.; Lee, J.S.; Jeong, S.C.; Kang, S.T.; Ha, B.K.; Kim, D.Y.; et al. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genomewide association study. PLoS ONE 2019, 14, e0224074.
  41. Wang, L.X.; Cheng, X.Z.; Wang, S.H. Genetic Diversity Analysis and a Core Collection of Rice Bean (Vigna umbellata) in China. J. Plant Genet. Resour. 2014, 15, 242–247. (In Chinese)
  42. Hao, X.P.; Wang, Y.; Tian, X. Construction of Primary Core Collection of Common Bean (Phaseolus vulgaris L.) Based on Agronomic Traits in Shanxi Province. J. Plant Genet. Resour. 2016, 17, 815–823. (In Chinese)
  43. Jiang, J.Y.; Yang, T.; Wang, F.G. Diversity Analysis of Germplasm Resources and Construction of Mini-core Collections for Vicia faba L. at Home and Abroad. Acta Agron. Sin. 2014, 40, 1311–1319. (In Chinese)
  44. Schafleitner, R.; Nair, R.M.; Rathore, A.; Wang, Y.W.; Lin, C.Y.; Chu, S.H.; Lin, P.Y.; Chang, J.C.; Ebert, A.W. The AVRDC-The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genom. 2015, 16, 0111.
  45. Wang, M.M.; Sun, D.L.; Chen, R.; Yang, Y.; Zhang, G.; Lv, M.; Wang, Q.; Xie, T.; Niu, G.; Shan, X.; et al. Construction and Evaluation of Cauliflower Core Collection. Acta Hortic. Sin. 2023, 50, 421–431. (In Chinese)
  46. Zhang, G.G.; Liu, H.D.; Du, D.Z. Population structure analysis and core germplasm construction of Brassica napus restorer lines. Chin. J. Oil Crop Sci. 2022, 175, 1–9. (In Chinese)
  47. Li, L.; He, W.M.; Ma, L.P.; Liu, P.; Xu, H.; Xu, J.; Zheng, X. Construction Chinese Cabbage (Brassica rapa L.) Core Collection and its EST-SSR Fingerprint Database by EST-SSR Molecular Markers. Genom. Appl. Biol. 2009, 28, 76–88. (In Chinese)
  48. Zheng, F.S.; Wang, X.M.; Li, G.H. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits. J. Zhejiang Univ. 2021, 47, 171–181. (In Chinese)
  49. Deng, X.B.; Liu, L.; Yan, Z.; Li, T.; Liu, X.Y.; Feng, J.J.; Chi, H.J.; Zheng, Z.; Li, J.M. Development of a Core Collection of Processing Tomato Germplasms and Analysis of Genetic Background. Acta Hortic. Sin. 2015, 42, 1299–1312. (In Chinese)
  50. Peng, F.; Li, Y.; Dai, Y.R.; Wang, X.M.; Yang, J.; Wang, Q.H.; Cai, X.F. Construction of spinach’s core germplasms based on its phenotypic traits. J. Shanghai Norm. Univ. 2022, 51, 9–19. (In Chinese)
  51. Hoshikawa, K.; Lin, Y.P.; Schafleitner, R.; Shirasawa, K.; Isobe, S.; Nguyen, D.C.; Ohsawa, R.; Yoshioka, Y. Genetic diversity analysis and core collection construction for Amaranthus tricolor germplasm based on genome-wide single-nucleotide polymorphisms. Sci. Hortic. 2023, 307, 111428.
  52. Cui, J.J.; Cheng, J.W.; Cao, Y. Studies on Construction of Bitter Gourd Core Collection Based on SSR Markers and Phenotypic Traits. China Veg. 2022, 2, 25–32. (In Chinese)
  53. Hou, Z.Q.; Wang, L.H.; Zhao, M.L.; Yang, S.P.; Sun, X.M.; Gao, J.M.; Zhong, Q.W. Preliminary Construction of Core Collection of Jerusalem Artichoke Based on Phenotypic Data. Mol. Plant Breed. 2021, 19, 3463–3472. (In Chinese)
  54. Yang, F.; Zhang, Y.F.; Wang, J.H. SSR analysis of Chinese yam (Dioscorea opposita Thunb.) germplasm resources and construction of primary core collection. J. North. Agric. 2022, 50, 18–27. (In Chinese)
  55. Wang, X.; Bao, K.; Reddy, U.K.; Bai, Y.; Hammar, S.A.; Jiao, C.; Wehner, T.C.; Ramírez-Madera, A.O.; Weng, Y.Q.; Grumet, R.; et al. The USDA cucumber (Cucumis sativus L.) collection: Genetic diversity, population structure, genome-wide association studies, and core collection development. Hortic. Res. 2018, 5, 64.
  56. Ge, R.D. Construction of Pumpkin Core Germplasm for Anvils. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2020.
  57. Jiao, X.X. Construction of Core Collections of Wax Gourd. Master’s Thesis, Guangxi University, Nanning, China, 2018.
  58. Lee, H.Y.; Ro, N.Y.; Jeong, H.J.; Kwon, J.K.; Jo, J.; Ha, Y. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 2016, 17, 142.
  59. Liu, Z.J.; Cao, Z.M.; Zhu, J.; Shen, L.B. Comparative study on the construction of sweet pepper core collection. J. Northeast Agric. Univ. 2016, 47, 21–29. (In Chinese)
  60. Miyatake, K.; Shinmura, Y.; Matsunaga, H.; Fukuoka, H.; Saito, T. Construction of a core collection of eggplant (Solanum melongena L.) based on genome-wide SNP and SSR genotypes. Breed. Sci. Preview 2019, 69, 498–502.
  61. Li, X.; Cui, L.; Zhang, L.; Huang, Y.; Zhang, S.; Chen, W.; Deng, X.; Jiao, Z.; Yang, W.; Qiu, Z.; et al. Genetic Diversity Analysis and Core Germplasm Collection Construction of Radish Cultivars Based on Structure Variation Markers. Int. J. Mol. Sci. 2023, 24, 2554.
  62. Li, R.; Zhou, F.; Gao, Y.; Liu, C.; Yu, S.; Zhao, K.; Gong, W.; Lang, J.; Zhang, H.; Yu, X. Genetic Diversity and Primary Core Collection Construction of Turnip (Brassica rapa L. ssp. rapifera Matzg) Landraces in Tibet Revealed via Morphological and SSR Markers. Agronomy 2021, 11, 1901.
  63. Li, J.; Liu, X.B.; Zhao, Z.W.; Yang, Z.L. Genetic diversity, core collection and breeding history of Pleurotus ostreatus in China. Mycoscience 2019, 60, 14–24.
  64. Sa, K.J.; Kim, D.M.; Oh, J.S.; Park, H.; Hyun, D.Y.; Lee, S.; Rhee, J.H.; Lee, J.K. Construction of a core collection of native Perilla germplasm collected from South Korea based on SSR markers and morphological characteristics. Sci. Rep. 2021, 11, 23891.
  65. Xu, Y.; Chen, C.S.; Ji, D.H.; Xu, K.; Xie, X.X.; Xie, C.T. Developing a core collection of Pyropia haitanensis using simple sequence repeat markers. Aquaculture 2016, 452, 351–356.
  66. Sun, Y.Q.; Chen, J.H.; Zhang, J. Construction A Core Collection of Armeniaca sibirica Based on Phenotypic Traits. J. Shenyang Agric. Univ. 2022, 53, 43–54. (In Chinese)
  67. Liu, J.; Liao, K.; Zhao, S.R. The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers. Sci. Agric. Sin. 2015, 48, 2017–2028. (In Chinese)
  68. Wang, Y.Z.; Zhang, J.H.; Sun, H.Y.; Ning, N. Construction and evaluation of a primary core collection of apricot germplasm in China. Sci. Hortic. 2011, 128, 311–319.
  69. Sun, Y.; Dong, S.; Liu, Q.; Chen, J.; Pan, J.; Zhang, J. Selection of a core collection of Prunus sibirica L. germplasm by a stepwise clustering method using simple sequence repeat markers. PLoS ONE 2021, 16, e0260097.
  70. Lu, M.; Zhang, H.; Bai, J. Genetic Diversity Analysis and Core Collection Construction in Rosa roxburghii Based on Fruits Quality and EST-SSR Markers. Mol. Plant Breed. 2020, 18, 3098–3106. (In Chinese)
  71. Bu, H.D.; Zhang, B.B.; Song, H.W.; Liang, Y.H.; Liu, Y.J.; Cheng, X.M.; Gu, G.J.; Liu, C. Construction Core Collections of Pear Germplasms in Cold Region by SSR and Phenotypic Traits. Acta Hortic. Sin. 2012, 39, 2113–2123. (In Chinese)
  72. Sun, Y.Q. Genetic Diversity Analysis and Core Collection Construction of Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow. Master’s Thesis, Tarim University, Aral, China, 2016.
  73. Xu, C.; Gao, J.; Du, Z.; Li, D.; Wang, Z.; Li, Y.; Pang, X. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujube Mill. Var. jujube accessions using microsatellite markers. Nat. Sci. Rep. 2016, 6, 31503.
  74. Sivalingam, P.N.; Singh, D.; Chauhan, S.; Changal, H.K.; Bhan, C.; Mohapatra, T.; More, T.A.; Sharma, S.K. Establishment of the core collection of Ziziphus mauritiana Lam. from India. Plant Genet. Resour. 2013, 12, 140–142.
  75. Le Cunff, L.; Fournier-Level, A.; Laucou, V.; Vezzulli, S.; Lacombe, T.; Adam-Blondon, A.F.; Boursiquot, J.-M.; This, P. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol. 2008, 8, 31.
  76. Hu, J.; Wang, P.; Su, Y.; Wang, R.; Li, Q.; Sun, K. Microsatellite diversity, population structure, and core collection formation in Melon germplasm. Plant Mol. Biol. Rep. 2015, 33, 439–447.
  77. Pal, S.; Revadi, M.; Thontadarya, R.N.; Reddy, D.C.L.; Varalakshmi, B.; Pandey, C.D.; Rao, E.S. Understanding genetic diversity, population structure and development of a core collectionof Indian accessions of watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai). Plant Genet. Resour. Charact. Util. 2020, 18, 359–368.
  78. Hu, G.G.; Jiang, Q.; Wang, Z. Genetic Diversity Analysis and Core Collection Construction of the Actinidia chinensis Complex (Kiwifruit) Based on SSR Markers. Agronomy 2022, 12, 3078.
  79. Razi, S.; Soleimani, A.; Zeinalabedini, M.; Vazifeshenas, M.R.; Martinez-Gomez, P.; Kermani, A.M.; Raiszadeh, A.R.; Tayari, M.; Martinez-Garcia, P.J. Development of a Multipurpose Core Collection of New Promising Iranian Pomegranate (Punica granatum L.) Genotypes Based on Morphological and Pomological Traits. Horticulturae 2021, 7, 350.
  80. Huang, X.F.; Wei, Y.L.; Yuan, Y. Genetic diversity analysis and core collection construction of 221 cultivars (strains) of Litchi chinensis based on SNP molecular markers. J. Plant Resour. Environ. 2022, 31, 74–84. (In Chinese)
  81. Sun, Q.; Bai, L.; Ke, L.; Xiang, X.; Zhao, J.; Ou, L. Developing a core collection of litchi (Litchi chinensis Sonn.) based on EST-SSR genotype data and agronomic traits. Sci. Hortic. 2012, 146, 29–38.
  82. Dervishi, A.; Jakse, J.; Ismaili, H.; Javornik, B.; Stajner, N. Genetic structure and core collection of Olive germplasm from Albania revealed by microsatellite markers. Genes 2021, 12, 256.
  83. Zhang, C.Y.; Chen, X.S.; Zhang, Y.M.; Yuan, Z.H.; Liu, Z.C.; Wang, Y.L.; Lin, Q. Method of Constructing Core Collection for Malus sieversii in Xinjiang, China Using Molecular Markers. Agric. Sci. China 2009, 8, 267–284.
  84. Liang, W.; Dondini, L.; Franceschi, P.D.; Paris, R.; Sansavini, S.; Tartarini, S. Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol. Biol. Rep. 2015, 33, 458–473.
  85. Kim, J.H.; Oh, Y.; Lee, G.A.; Kwon, Y.S.; Kim, S.A.; Kwon, S.I.; Do, Y.S.; Choi, C. Genetic Diversity, Structure, and Core Collection of Korean Apple Germplasm Using Simple Sequence Repeat Markers. Hortic. J. 2019, 88, 329–337.
  86. Li, Y.X.; Gao, Q.J.; Li, T.H. Sampling strategy based on fruit char acteristics for a primary core collection of peach cultivars. J. Fruit Sci. 2006, 23, 359–364.
  87. Escribano, P.; Viruel, M.A.; Hormaza, J.I. Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann. Appl. Biol. 2008, 153, 25–32.
  88. Balas, F.C.; Osuna, M.D.; Domínguez, G.; Pérez-Gragera, F.; López-Corrales, M. Ex situ conservation of underutilised fruit tree species: Establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet. Genomes 2014, 10, 703–710.
  89. Campoy, J.A.; Lerigoleur-Balsemin, E.; Christmann, H.; Beauvieux, R.; Girollet, N.; Quero-Garcia, J.; Dirlewanger, E.; Barreneche, T. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016, 16, 49.
  90. Liu, Y.; Sun, Z.; Liu, D.; Wu, B.; Zhou, Q. Screening the core collection of pomelo germplasm based on molecular marker. J. Fruit Sci. 2006, 23, 339–345. (In Chinese)
  91. Zhang, Y.F.; Zhang, Q.L.; Yang, Y.; Luo, Z.R. Development of primary core collection for Japanese persimmon originated in China (Diospyros kaki Thunb.) by stepwise clustering. Acta Hortic. 2007, 760, 6976.
  92. Liu, X.L.; Liu, H.B.; Ma, L.; Li, X.J.; Xu, C.H.; Su, H.S.; Ying, X.M.; Cai, Q.; Fan, Y.H. Construction of sugarcane hybrids core collection by using stepwise clustering sampling approach with molecular marker data. Acta Agron. Sin. 2014, 40, 1885–1894.
  93. Chen, M.K.; Chen, L.; Sun, W.H.; Ma, S.H.; Lan, S.; Peng, D.H.; Liu, Z.J.; Ai, Y. Genetic Diversity Analysis and Core Collection of Cymbidium ensifolium Germplasm Resources. Acta Hortic. Sin. 2022, 49, 175–186. (In Chinese)
  94. Li, J.W.; Su, J.S.; Zhang, F.; Fang, W.M.; Guan, Z.Y.; Chen, S.M.; Chen, F.D. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits. Sci. Agric. Sin. 2021, 54, 3514–3526. (In Chinese)
  95. Zhao, L.M.; Li, J.W.; Zhang, F.; Su, J.S.; Fang, W.M.; Wang, H.B.; Jiang, J.F.; Chen, S.M.; Chen, F.D.; Guan, Z.Y. Construction of a Core Collection of Spray Cut Chrysanthemum Based on Phenotypic Data. Acta Hortic. Sin. 2022, 49, 2273–2284. (In Chinese)
  96. Ming, J.; Zhang, Q.X.; Lan, Y.P. Core collection of Prunus mume Sieb. et Zucc. J. Beijing For. Univ. 2005, 27, 65–69. (In Chinese)
  97. Hu, H. Studies on the Construction of Core Collection for Wintersweet (Chimonanthus praeco) and Its Vegetative Propagation Technology. Master’s Thesis, Southwest University, Chongqing, China, 2020.
  98. Jiang, L.Y. The Wild Germplasm Resources Evaluation and Core Collection Establishment of Rosa rugosa. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2018.
  99. Li, M.Q.; Shi, G.Y.; Ye, S.H.; Huang, Y.W.; Bian, X.R. Methods of establishing Lanzhou lily core collection based on ISSR molecular marker data. J. Desert Res. 2015, 35, 1573–1578. (In Chinese)
  100. Li, B.Y. Studies on Genetic Diversity and Construction of Core Collection of Tree Peony Cultivars from Chiese Central Plains. Master’s Thesis, Beijing Forestry University, Beijing, China, 2007.
  101. Wang, Z.Y.; Li, Z.F.; Peng, C.; Chen, Y.; Zhang, X.Y. Construction of Lagerstroemia indica Core Collection based on SSR Markers and Comparison of Sampling Strategies. Mol. Plant Breed. 2022, 1, 1–13. (In Chinese)
  102. Wang, L.; Wang, J.M.; Wang, W.; Wang, L.; Wang, L.J.; Yan, X.C.; Tan, M.L. Development of a core collection in sunflower (Helianthus annuus L.) germplasm using phenotypic diversity. Chin. J. Oil Crop Sci. 2021, 43, 1052–1060. (In Chinese)
  103. Yang, L.; Li, H.; Guo, Q.Q. Construction of core collections of Sophora moorcroftiana endemic to the Qinghai–Tibet Plateau. Plant Physiol. J. 2022, 58, 1133–1144. (In Chinese)
  104. Li, J.H.; Ou, X.H.; Deng, W.J.; Luo, K.K.; Zhang, H.Y.; He, M.L.; Yan, H.J. Construction of core germplasm bank of Fallopia multiflora using SRAP molecular markers. Guihaia 2021, 41, 1920–1930. (In Chinese)
  105. Gong, F.S.; Geng, Y.P.; Zhang, P.F.; Zhang, F.; Fan, X.F.; Liu, Y.L. Genetic Diversity and Structure of Core Collection of Huangqi (Astragalus) Developed by Genomic Simple Sequence Repeat Markers. Res. Sq. 2022, 1, 1–12.
  106. Liu, R.X. Study on Construction of Scutellaria baicalensis Core Collection and Screening of Excellent Germplasm. Master’s Thesis, Beijing University of Chinese Medicine, Beijing, China, 2016.
  107. Liu, M.; Hu, X.; Wang, X.; Zhang, J.; Peng, X.; Hu, Z.; Liu, Y. Constructing a Core Collection of the Medicinal Plant Angelica biserrata Using Genetic and Metabolic Data. Front. Plant Sci. 2020, 11, 600249.
  108. Yang, M.L. The Germplasm Evaluation and Core Collection Construction of Cornus officinalis Based on ISSR Markers. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2016.
  109. Liu, F.M.; Zhang, N.N.; Liu, X.J.; Yang, Z.J.; Jia, H.Y.; Xu, D.P. Genetic diversity and population structure analysis of Dalbergia Odorifera germplasm and development of a core collection using microsatellite markers. Genes 2019, 10, 281.
  110. Niu, S.; Koiwa, H.; Song, Q.; Qiao, D.; Chen, J.; Zhao, D.; Chen, Z.; Wang, Y.; Zhang, T. Development of core collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ 2020, 8, e8572.
  111. Zhao, Z.F. Analysis of Genetic Diversity and Core Collection Construction of Cultivated Tea Germplasm Resources in Guizhou. Master’s Thesis, Guizhou University, Guizhou, China, 2022.
  112. Wang, X.C.; Chen, L.; Yang, Y.J. Establishment of core collection for Chinese tea germplasm based on cultivated region grouping and phenotypic data. Front. Agric. China 2011, 5, 344–350.
  113. Leroy, T.; de Bellis, F.; Legnate, H.; Musoli, P.; Kalonji, A.; Loor Solórzano, R.G.; Cubry, P. Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora. Genetica 2014, 142, 185–199.
  114. Martínez, I.B.; de la Cruz, V.M.; Nelson, M.R.; Bertin, P. Establishment of a core collection of traditional Cuban Theobroma cacao plants for conservation and utilization purposes. Plant Mol. Biol. Report. 2014, 35, 47–60.
  115. Qian, Y.Y.; Liu, Y.; Cui, S.F.; Wang, G.G.; Zhang, X.; Jin, W.P.; Li, J.L. Analysis of Genetic Diversity of Cotton Germplasm Resources and Extraction of Core Germplasm Based on Phenotypic Traits. Acta Agric. Boreali-Simiga 2019, 34, 29–35. (In Chinese)
  116. Han, P.; Tian, X.M.; Wang, Y.; Huang, C.; Ma, Y.Z.; Zhou, X.F.; Yu, Y.; Zhang, D.W.; Xu, H.J.; Cao, Y.; et al. Construction of a core germplasm bank of upland cotton (Gossypium hirsutum L.) based on phenotype, genotype and favorable alleles. Genet. Resour. Crop Evol. 2022, 69, 2399–2411.
  117. Mei, Y.J.; Zhou, J.P.; Xu, H.M. Development of Sea Island cotton (Gossypium barbadense L.) core collection using genotypic values. AJCS 2012, 6, 673–680.
  118. Luan, M.B.; Zou, Z.Z.; Zhu, J.J. Development of a core collection for ramie by heuristic search based on SSR markers. Biotechnol. Biotechnol. Equip. 2014, 28, 798–804.
  119. Kumar, S.; Ambreen, H.; Variath, M.T.; Rao, A.R.; Agarwal, M.; Kumar, A.; Goel, S.; Jagannath, A. Utilization of molecular, phenotypic, and geographical diversity to develop compact composite core collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through maximization strategy. Front. Plant Sci. 2016, 7, 1554.
  120. Liu, Y.Y.; Mei, H.X.; Du, Z.W.; Wu, K.; Zheng, Y.; Cui, X.; Zheng, L. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers. Sci. Agric. Sin. 2017, 50, 2433–2441. (In Chinese)
  121. Ronfort, J.; Bataillon, T.; Santoni, S.; Delalande, M.; David, J.L.; Prosperi, J.M. Microsatellite diversity and broad scale geographic structure in a model legume: Building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol. 2006, 6, 28.
  122. Fang, L.C.; Xia, H.M.; Ma, W.J.; Zhang, X.Y. Genetic Diversity Analysis and Primary Core Collection of Catalpa bungei Germplasm with SSR Markers. J. Northeast. For. Univ. 2017, 45, 1–5. (In Chinese)
  123. Xue, H.; Yu, X.; Fu, P.; Liu, B.; Zhang, S.; Li, J.; Zhai, W.; Lu, N.; Zhao, X.; Wang, J.; et al. Construction of the Core Collection of Catalpa fargesii f. duclouxii (Huangxinzimu) Based on Molecular Markers and Phenotypic Traits. Forests 2021, 12, 1518.
  124. Xu, C.H.; Liu, X.L.; Mao, J.; Liu, H.B.; Lin, X.Q.; Lu, X.; Su, H.S. Construction of a core-collection of Saccharum spontaneum based on SSR molecular markers. J. Hunan Agric. Univ. 2020, 46, 657–663. (In Chinese)
  125. Peng, C.; Fan, X.P.; Su, X.H.; Long, K.L.; Zhang, X.Y. Construction of core collection in southern type of Populus deltoides using SSR makers. Acta Bot. Boreali-Occident. Sin. 2019, 39, 250–257. (In Chinese)
  126. Zhong, Y.D.; Liu, L.P.; Li, Y.Q.; Wu, Z.X.; Yang, A.; Liu, S.J.; Liu, Q.L.; Liu, T.Y.; Yu, F. Sampling Strategy of Primary Core Germplasm of Cinnamomum camphora in China. J. Southwest For. Univ. 2020, 40, 1–13. (In Chinese)
  127. Huang, Y.Q.; Yin, G.G.; Yang, J.C.; Yu, N.; Zou, W.T.; Li, R.S. Developing a Mini Core Germplasm of Phoebe bournei Based on SSR Molecular Marker. Mol. Plant Breed. 2020, 18, 2641–2648. (In Chinese)
  128. Wu, H.; Yu, W.W.; Wu, H.; Dong, L.M.; Dai, W.S.; Ye, S.Y.; Shen, D.F. Determination of Core Germplasm in Torreya grandis Fort. ex Lindl. Based on Seed Traits and Molecular Markers. Mol. Plant Breed. 2019, 17, 5513–5520. (In Chinese)
  129. Duan, F.; Zhang, H.; Li, S.; Tian, Z.Q.; Gan, X.H. Core Collection Construction of Endangered Plant Tetracentron sinense Based on ISSR Molecular Markers. Subtrop. Plant Sci. 2018, 47, 101–106. (In Chinese)
  130. Shen, Z.; Ma, L.Y.; Ao, Y.; Duan, J. Analysis of the genetic diversity and construction of core collection of Xanthoceras sorbifolia Bunge. Using microsatellite marker data. Mol. Plant Breed. 2017, 15, 3341–3350. (In Chinese)
  131. Yang, H.; Zhang, R.; Wang, B.; Xu, Z.; Zhou, Z. Construction of core collection of Schima superba based on SSR molecular markers. Sci. Silvae Sin. 2017, 53, 37–46. (In Chinese)
  132. Peng, C.; Li, Z.F.; Xiang, S.S.; Zhang, X.Y. Molecular Marker Evaluation and Construction of Primary Core Collection of Sapium sebiferum. Mol. Plant Breed. 2017, 15, 1455–1460. (In Chinese)
  133. Yan, L.P.; Wu, D.J.; Mao, X.H.; Yao, J.X.; Ren, F.; Li, S.W.; Wang, K.F.; Wang, Y.H.; Liu, C.L. Construction of core collection of Fraxinus based on SSR molecular markers. J. Cent. South Univ. For. Technol. 2019, 39, 1–9. (In Chinese)
  134. Li, H.G. Genetic Diversity Analysis, Core Collection Construction and Molecular Identification of Eucommia ulmoides Oliver. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2017.
  135. Mao, J.; Liu, X.L.; Su, H.S.; Lu, X.; Lin, X.Q.; Cai, Q.; Fan, Y.H. Constructing Core Collection of Saccharum arundinaceum L. Based on Phenotype and Molecular Markers. J. Plant Genet. Resour. 2016, 17, 607–615. (In Chinese)
  136. Boccacci, P.; Aramini, M.; Ordidge, M.; van Hintum, T.J.L.; Marinoni, T.D.; Valentini, N.; Sarraquigne, J.-P.; Solar, A.; Rovira, M.; Bacchetta, L.; et al. Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories. Tree Genet. Genomes 2021, 17, 48.
  137. Bernard, A.; Barreneche, T.; Donkpegan, A.; Lheureux, F.; Dirlewanger, E. Comparison of structure analyses and core collections for the management of walnut genetic resources. Tree Genet. Genomes 2020, 8, 365–378.
  138. Mahmoodi, R.; Dadpour, M.R.; Hassani, D.; Zeinalabedini, M.; Vendramin, E.; Leslie, C.A. Composite coreset construction and diversity analysis of Iranian walnut germplasm using molecular markers and phenotypic traits. PLoS ONE 2021, 3, e0248623.
  139. Wei, Z.G.; Gao, Y.C.; Yang, C.P. Sampling method for constructing germplasm core collections of Betula platyphylla. J. Northeast For. Univ. 2009, 37, 1–4. (In Chinese)
  140. Li, H.Y.; Liang, Z.W.; Chen, C.; Huang, H.H.; Tong, Z.K.; Lu, Y.Q. Core Germplasm of Betula luminifera Screened by Molecular Markers. J. Zhejiang For. Sci. Technol. 2011, 3, 1–4. (In Chinese)
  141. Zhao, J.; Tong, Y.Q.; Ge, T.; Ge, J. Genetic diversity estimation and core collection construction of Sinojackia huangmeiensis based on novel microsatellite markers. Biochem. Syst. Ecol. 2016, 64, 74e80.
  142. Li, N.; Yang, Y.; Xu, F.; Chen, X.; Wei, R.; Li, Z.; Pan, W.; Zhang, W. Genetic Diversity and Population Structure Analysis of Castanopsis hystrix and Construction of a Core Collection Using Phenotypic Traits and Molecular Markers. Genes 2022, 13, 2383.
  143. Zhang, Y.; Hu, D.; Zuo, J.; Zhang, P.; Wang, Z.; Chen, C. Development of a mulberry core collection originated in China to enhance germplasm conservation. Crop Breed. Appl. Biotechnol. 2019, 19, 55–61.
  144. Nie, X.H.; Wang, Z.H.; Liu, N.W.; Song, L.; Yan, B.Q.; Xing, Y.; Zhang, Q.; Fang, K.F.; Zhao, Y.L.; Chen, X.; et al. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. J. Integr. Agric. 2021, 20, 1277–1286.
  145. Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Barreneche, T.; Mattioni, C.; Villani, F.; Díaz-Hernández, M.B.; Martín, L.M.; Martín, A. Database of European chestnut cultivars and definition of a core collection using simple sequence repeats. Tree Genet. Genomes 2017, 13, 114.
  146. Miyamoto, N.; Ono, M.; Watanabe, A. Construction of a core collection and evaluation of genetic resources for Cryptomeria japonica (Japanese cedar). J. For. Res. 2015, 20, 186–196.
  147. Lv, J.B.; Li, C.R.; Zhou, C.P.; Chen, J.B.; Li, F.G.; Wang, Q.G.; Li, M.; Wang, Y.; Chen, S.; Chen, J.; et al. Genetic diversity analysis of a breeding population of Eucalyptu scloeziana F.Muell. (Myrtaceae) and extraction ofacore germplasm collection using microsatellite markers. Ind. Crops Prod. 2020, 145, 112157.
  148. Liu, D.H.; Zhang, F.Q.; Zhang, W.H. Establishment of Eucalyptus urophylla Core Collection Based on Geographical Distribution and Phenotypic Data. J. Southwest For. Univ. 2013, 33, 1–8. (In Chinese)
  149. Di Guardo, M.; Scollo, F.; Ninot, A.; Rovira, M.; Hermoso, J.F.; Distefano, G.; La Malfa, S.; Batlle, I. Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management. Tree Genet. Genomes 2019, 15, 41.
  150. Ghazal, H.; Mouhaddab, J.; Ait Aabd, N.; Msanda, F.; Filali-Maltouf, F.; Belkadi, B.; Ferradouss, A.; El Modafar, C.; Ibnsouda Koraichi, S.; Ghazal, H.; et al. Assessing genetic diversity and constructing a core collection of an endangered Moroccan endemic tree . Moroc. J. Biol. 2016, 13, 1–12.
  151. Wang, X.; Cao, Z.; Gao, C.; Li, K. Strategy for the construction of a core collection for Pinus yunnanensis Franch. to optimize timber based on combined phenotype and molecular marker data. Genet. Resour. Crop Evol. 2021, 68, 3219–3240.
  152. Wang, X.; Liu, X.; Xing, S.; Kong, Q.; Zhang, Y.; Sun, L.; Gao, Y. AFLP analysis of genetic diversity and a construction of the core collection of partial ancient ginkgo trees in China. Acta Hortic. Sin. 2016, 43, 249–260. (In Chinese)
  153. Zhang, Z.; Yang, Q.; Niu, Y.; Zhang, Y.; Dong, S.; Zhang, W.; Wang, Z. Diversity analysis and establishment of core collection among Akebia trifoliata (Thunb.) Koidz. in Qinba mountain area of China using ISSR and SRAP markers. Genet. Resour. Crop Evol. 2020, 68, 1085–1102.
  154. Zhu, Y.; Liang, D.; Song, Z.; Tan, Y.; Guo, X.; Wang, D. Genetic Diversity Analysis and Core Germplasm Collection Construction of Camellia oleifera Based on Fruit Phenotype and SSR Data. Genes 2022, 13, 2351.
  155. Zhang, L.B. Analysis of Population Genetic Variation of Plus Trees and Construction of Core Collection in Cornus wilsoniana. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020.
  156. Hu, J.; Zhu, J.; Xu, H.M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 2000, 101, 264–268.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , ,
View Times: 361
Revisions: 2 times (View History)
Update Date: 11 May 2023
1000/1000
Video Production Service