Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1371 2023-05-04 05:54:29 |
2 format correct Meta information modification 1371 2023-05-05 02:48:24 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Lashani, E.; Amoozegar, M.A.; Turner, R.J.; Moghimi, H. Prevalence and Toxicity of Metalloids. Encyclopedia. Available online: https://encyclopedia.pub/entry/43729 (accessed on 18 May 2024).
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Prevalence and Toxicity of Metalloids. Encyclopedia. Available at: https://encyclopedia.pub/entry/43729. Accessed May 18, 2024.
Lashani, Elham, Mohammad Ali Amoozegar, Raymond J. Turner, Hamid Moghimi. "Prevalence and Toxicity of Metalloids" Encyclopedia, https://encyclopedia.pub/entry/43729 (accessed May 18, 2024).
Lashani, E., Amoozegar, M.A., Turner, R.J., & Moghimi, H. (2023, May 04). Prevalence and Toxicity of Metalloids. In Encyclopedia. https://encyclopedia.pub/entry/43729
Lashani, Elham, et al. "Prevalence and Toxicity of Metalloids." Encyclopedia. Web. 04 May, 2023.
Prevalence and Toxicity of Metalloids
Edit

Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions.

metalloids microbial bioremediation microbial consortia

1. Selenium

Selenium was discovered by Jons Jacob Berzelius in 1808 and derived from the Greek word selene which means the moon. This element is the 69th most abundant element on the earth and belongs to the group V periodic table [1]. It exists in different oxidation states such as selenite (IV; SeO32−), selenate (VI; SeO42−), elemental Se (0), and organic forms such as dimethyl selenide, methyl selenide, selenomethionine, selenocysteine. According to Paul and Saha (2019), California (38%), Ireland (32%), Punjab (8%), Jaipur (9%), and China (2%) are the most selenium-polluted regions in the world. Selenium is released to the environment by natural and anthropogenic activities such as volcanic eruption, mining, weathering of rocks, coal mining (so-called selenium curse of the eastern range of the north American Rocky mountains) and combustion, and effluent waste by some industries and agriculture leading to polluted areas [2][3][4][5][6][7][8].
There is a narrow limit between selenium toxicity and the amount required for human health. Paradoxically, less than 40 µg/day of selenium is essential for the body and more than 400 µg/day is toxic to the human body [9]. Daily intake of selenium in food varies from 0.055 to 0.4 mg per day, required for crucial body functions such as antioxidant defense, protein folding, and cell signaling [10][11]. Some primary selenoprotein genes in mammals have central roles in Redox signaling (GPX1, GPX3, GPX4, TRXRD1, TRXRD2), Protein folding and degradation (SEP15, SELS), and metabolism (SEP1, SPS1, SPGS) [12][13]. Selenium deficiency is associated with Keshan disease [14][14][15][16][17], muscle weakness [18], Kashin Beck [19][20][21][22][23], cardiomyopathy [24][25][26][27], and redox dysregulation [28]. In contrast, exposure to excessive amounts of selenium can lead to disorders such as selenosis, loss of hair and nails, redox dysregulation, mitochondrial dysfunction, and cell growth inhibition [29][30][31][32][33][34].

2. Arsenic

Arsenic (As, group V periodic table) is the 20th most abundant elements in the earth’s crust with a terrestrial abundance of about 1.5–3 mg/kg and an average abundance of about 5 mg/kg [1]. Anthropogenic and natural activities are the main sources of arsenic pollution in the world. The groundwater of different regions of Asia (Bangladesh [35][36][37][38], India [39][40][41][42][43][44], China [45][46][47][48][49][50], Nepal [51][52], Cambodia [53], Vietnam [54], Myanmar [55], Pakistan [56][57][58][59][60][61], and Indonesia [62]), North and South America (USA [63][64], Canada [65][66], Argentina [67], Chile [68], and Mexico [69]), Europe (Hungary [70]) and Africa (South Africa [71]) are contaminated by arsenic [72]. Arsenic occurs in different oxidation states in nature, including arsenate (+5, AsO43−), arsenite (+3, AsO33−), elemental arsenic (0), and arsenide (−3). Akin to SeO32−, AsO33− is the most toxic form among arsenic oxyanions in the environment [73][74]. Arsenic-containing compounds were applied in the manufacture of glass [75], semiconductors [76] and alloys [77], herbicides [78][79], wood preservatives [80], pesticides [81], animal feed additives [82], and medicine [83]. Disruption in cell signaling [84], reactive oxygen species (ROS) generation [85], high affinity to protein thiols or vicinal sulfhydryl groups [86], interruption in the binding of some hormones to their receptor [87], and prevention of oxidative phosphorylation [88] are the main effects of arsenic oxyanion on cells [74].
Depending on the concentration, oxidation state, and exposure time, arsenic can cause health problems such as cancer (skin [89], lung [90][91], bladder [92], and liver [93]), skin lesions [94], PNS (Peripheral Nervous System) disorder [95], liver failure [96], leukopenia [97], circulatory disease [98][99], anemia [100][101], and death [102][103].

3. Boron

Boron, the fifth element in the periodic table (group III), is a ubiquitous element in the environment that comprised an average concentration of around 10 mg/kg of the earth’s crust. Na2B4O5(OH)4·8H2O is a common form of boron in ores widely distributed in California and Turkey [104]. Argentina, Russia, Chile, Peru, China, Libya, Egypt, Iraq, Morocco, and Syria are other countries containing many boron deposits [105][106]. This element forms approximately 230 compounds, and natural and anthropogenic activities such as volcanoes, commercial uses, fertilizers, wastewater treatment plants, forest fires, and coal combustion can release it into the atmosphere [107]. Boron has very useful applications in some industries such as the manufacture of glass and ceramics, fertilizer and detergent [108][109][110][111].
This essential element plays a pivotal role in immune response [112][113], mineral metabolisms [114], and the endocrine system [115]. It can also inhibit osteoporosis in postmenopausal women [116] and decrease cardiovascular disease [117]. Similar to other metalloids, it can be toxic in higher concentrations and causes many problems such as an increase in the oxidative state of a cell, DNA damage, impairment of DNA repair systems and membrane functions, or the inhibition of protein folding, protein function, and activities in living organisms [105][118][119]. Boron is found in some antibiotics such as boromycin [120], tartrolons [121], aplasmomycin [122], and biomolecules such as the bacterial autoinducer 2 (AI-2] vibrioferrin (a siderophore) [123] and borolithochromes (pigment in algae Solenopora jurassica) [124]. Additionally, some nitrogen-fixing bacteria need boron as a cofactor for growth and nitrogen fixation [105].

4. Antimony

Antimony belongs to subgroup 15 of the element periodic table (atomic number 51) with average concentrations less than 1 μg/L in nature. Most of the world’s antimony reserves are located in South Africa, China, Russia, Bolivia, Tajikistan, and Mexico [125]. Due to the chalcophilic nature of antimony and its presence in ores containing chalcogen, smelting, and mining of ores containing these compounds, especially sulfide ores [126] are among the polluting sources of this element [127].
Antimonate (Sb (V); Sb(OH)6) and antimonite (Sb (III); Sb(OH)3) are the two common inorganic forms of antimony present in natural waters, and Sb(OH)3 is more toxic than the other one [128]. Antimony’s other toxic compound is antimony trichloride (SbCl3), used in alloys, as a constituent of paint pigments, and in rubber compounding. Other major applications of antimony are included in various industries and use such as semiconductor, alloys, batteries, catalyst, and medicine [129][130][131]. In ancient times, antimony was used to purify precious metals such as gold and silver. Furthermore, antimony is used with other compounds to make textiles, paper, and plastics as a fire retardant agent [126].
Antimony is not present in living systems and, such as arsenic, is highly toxic to humans and living organisms. Eye, skin, lung, mucous membrane irritation, oxidative DNA damage, pneumoconiosis, and increased lung, heart, and gastrointestinal diseases are some problems caused by long-term exposure to antimony [132][133]. Antimony can affect the nitrogen cycle in soil by influencing urease function under pH 7 [134].

5. Tellurium

Tellurium is an element that belongs to the 16th group of the periodic table with atomic number 52 and has two allotropic forms, including white crystalline metal and black amorphous powder [135][136]. The concentration of tellurium in the earth’s crust is very low and about 1–5 µg/kg [137]. Tellurium is found as oxyanions tellurite (IV; TeO32−) and tellurate (VI; TeO42−). Tellurium is found in industries such as petroleum refining plants, glass, electronic and photoelectronic industries, optics, and sensors [138]. Tellurium can be found in a variety of ores as well as coal. Another tellurium application is in medicine and has traditionally been exploited as an antimicrobial agent in treating some infectious diseases, including leprosy, tuberculosis, dermatitis, cystitis, and severe eye infections [139]. Tellurium is also used in labeling, imaging, and targeted drug delivery systems and has some anti-inflammatory, anti-fungal, anti-leishmaniasis, and immunomodulatory activities [140][141][142][143][144][145]. Exposure to a high amount of tellurium can cause several health issues, such as respiratory irritation, headache, drowsiness, weakness, malaise, lassitude, gastrointestinal symptoms, dizziness, and dermatitis [146]. Both Se and Te are mixed with Cadmium to make quantum dots (used in phone and TV screens) and photoreceptors in solar cells leading to concerns of their disposal and subsequent release into water systems [147].

6. Other Metalloids

Germanium is another metalloid that belongs to group 14 and period 4 of the periodic element table. This metalloid is ranked 54th among the most abundant elements in the earth’s crust and has two stable oxidation states +2 and +4 in nature. Only a few compounds of germanium such as GeO2, GeH4, GeCl4, and GeF4 have toxic properties and their organic forms have no effect on human health. Due to similar outer electron structure and properties, Germanium is also called a pseudo isotope of silicon [148][149]. Germanium is used in small quantities in some fields such as fiber optics [150][151], micro- and nano electronics [152], infrared detectors [153], and polymerization catalysts [154].
After oxygen, silicon (Si) with 27% is the most abundant element in the earth’s crust. This element is found in many human organs and its deficiency is related to infection and bone weakness. Si is mostly biologically inert, and it can be used as a drug carrier in ointments and hydrogel coatings in medical devices [155]. There are no specific reports on the devastating effects of astatine and silicon in the literature.

References

  1. Aguilar, N.C.; Faria, M.C.; Pedron, T.; Batista, B.L.; Mesquita, J.P.; Bomfeti, C.A.; Rodrigues, J.L. Isolation and characterization of bacteria from a brazilian gold mining area with a capacity of arsenic bioaccumulation. Chemosphere 2020, 240, 124871.
  2. Khamkhash, A.; Srivastava, V.; Ghosh, T.; Akdogan, G.; Ganguli, R.; Aggarwal, S. Mining-related selenium contamination in Alaska, and the state of current knowledge. Minerals 2017, 7, 46.
  3. Kavlak, G.; Graedel, T. Global anthropogenic selenium cycles for 1940–2010. Resour. Conserv. Recycl. 2013, 73, 17–22.
  4. Staicu, L.C.; Oremland, R.S.; Tobe, R.; Mihara, H. Bacteria versus selenium: A view from the inside out. In Selenium in Plants; Springer: Cham, Switzerland, 2017; pp. 79–108.
  5. Lemly, A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004, 59, 44–56.
  6. Gerson, A.R.; Fan, R.; Qian, G.; Schumann, R.C.; Olin, P.; Howard, D.L.; Smart, R.S.C. Examination of multiple sources of selenium release from coal wastes and strategies for remediation. J. Hazard. Mater. 2022, 422, 126924.
  7. Hao, L.; Zhang, J.; Zhang, S.; Ma, S.; Li, B.; Long, J.; Fan, J.; Luo, K. Distribution characteristics and main influencing factors of selenium in surface soil of natural selenium-rich area: A case study in Langao County, China. Environ. Geochem. Health 2021, 43, 333–346.
  8. Ibrahim, A.S.; Al-Farawati, R. Selenium Concentration Levels in Two Polluted Lagoons, Eastern Red Sea Coastal Waters. Water 2023, 15, 687.
  9. Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241.
  10. Piacenza, E.; Presentato, A.; Ambrosi, E.; Speghini, A.; Turner, R.J.; Vallini, G.; Lampis, S. Physical–chemical properties of biogenic selenium nanostructures produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1. Front. Microbiol. 2018, 9, 3178.
  11. Presentato, A.; Piacenza, E.; Anikovskiy, M.; Cappelletti, M.; Zannoni, D.; Turner, R.J. Biosynthesis of selenium-nanoparticles and-nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol. 2018, 41, 1–8.
  12. Stoytcheva, Z.R.; Berry, M.J. Transcriptional regulation of mammalian selenoprotein expression. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 1429–1440.
  13. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M. Selenoprotein gene nomenclature. J. Biol. Chem. 2016, 291, 24036–24040.
  14. Liu, X.; Wang, Y.; Han, S.; Zhang, Y.; Zou, Y.; Su, S.; Zhou, H.; Zhang, X.; Liang, H.; Hou, J. A spatial ecological study on serum selenium and Keshan disease in Heilongjiang province, China. Biol. Trace Elem. Res. 2020, 199, 3253–3261.
  15. Hou, J.; Zhu, L.; Chen, C.; Feng, H.; Li, D.; Sun, S.; Xing, Z.; Wan, X.; Wang, X.; Li, F. Association of selenium levels with the prevention and control of Keshan disease: A cross-sectional study. J. Trace Elem. Med. Biol. 2021, 68, 126832.
  16. Zhu, Y.-h.; Wang, X.-f.; Yang, G.; Wei, J.; Tan, W.-h.; Wang, L.-x.; Guo, X.; Lammi, M.J.; Xu, J.-h. Efficacy of long-term selenium supplementation in the treatment of chronic Keshan disease with congestive heart failure. Curr. Med. Sci. 2019, 39, 237–242.
  17. Jia, Y.; Wang, R.; Su, S.; Qi, L.; Wang, Y.; Wang, Y.; Zou, Y.; Liu, X.; Zhang, Y.; Hou, J. A county-level spatial study of serum selenoprotein P and Keshan disease. Front. Nutr. 2022, 9, 47.
  18. Rannem, T.; Ladefoged, K.; Hylander, E.; Christiansen, J.; Laursen, H.; Kristensen, J.H.; Linstow, M.; Beyer, N.; Liguori, R.; Dige-Petersen, H. The effect of selenium supplementation on skeletal and cardiac muscle in selenium-depleted patients. J. Parenter. Enter. Nutr. 1995, 19, 351–355.
  19. Peng, A.; Yang, C.; Rui, H.; Li, H. Study on the pathogenic factors of Kashin-Beck disease. J. Toxicol. Environ. Health Part A Curr. Issues 1992, 35, 79–90.
  20. Zhang, D.; Zhang, D.; Yang, X.; Li, Q.; Zhang, R.; Xiong, Y. The Role of Selenium-Mediated Notch/Hes1 Signaling Pathway in Kashin–Beck Disease Patients and Cartilage Injury Models. Biol. Trace Elem. Res. 2022.
  21. Wang, J.; Zhao, S.; Yang, L.; Gong, H.; Li, H.; Nima, C. Assessing the health loss from Kashin-Beck disease and its relationship with environmental selenium in Qamdo district of Tibet, China. Int. J. Environ. Res. Public Health 2021, 18, 11.
  22. Wang, L.; Yin, J.; Yang, B.; Qu, C.; Lei, J.; Han, J.; Guo, X. Serious selenium deficiency in the serum of patients with Kashin–Beck disease and the effect of nano-selenium on their chondrocytes. Biol. Trace Elem. Res. 2020, 194, 96–104.
  23. Ning, Y.; Hu, M.; Chen, S.; Zhang, F.; Yang, X.; Zhang, Q.; Gong, Y.; Huang, R.; Liu, Y.; Chen, F. Investigation of selenium nutritional status and dietary pattern among children in Kashin-Beck disease endemic areas in Shaanxi Province, China using duplicate portion sampling method. Environ. Int. 2022, 164, 107255.
  24. Saito, Y.; Hashimoto, T.; Sasaki, M.; Hanaoka, S.; Sugai, K. Effect of selenium deficiency on cardiac function of individuals with severe disabilities under long-term tube feeding. Dev. Med. Child Neurol. 1998, 40, 743–748.
  25. Bomer, N.; Grote Beverborg, N.; Hoes, M.F.; Streng, K.W.; Vermeer, M.; Dokter, M.M.; IJmker, J.; Anker, S.D.; Cleland, J.G.; Hillege, H.L. Selenium and outcome in heart failure. Eur. J. Heart Fail. 2020, 22, 1415–1423.
  26. Shimada, B.K.; Alfulaij, N.; Seale, L.A. The impact of selenium deficiency on cardiovascular function. Int. J. Mol. Sci. 2021, 22, 10713.
  27. Mirdamadi, A.; Rafiei, R.; Kahazaipour, G.; Fouladi, L. Selenium level in patients with heart failure versus normal individuals. Int. J. Prev. Med. 2019, 10, 210.
  28. Tang, C.; Li, S.; Zhang, K.; Li, J.; Han, Y.; Zhan, T.; Zhao, Q.; Guo, X.; Zhang, J. Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox Biol. 2020, 36, 101519.
  29. Lenz, M.; Lens, P.N. The essential toxin: The changing perception of selenium in environmental sciences. Sci. Total Environ. 2009, 407, 3620–3633.
  30. Long, Z.; Xiang, J.; Song, J.; Lu, Y.; Yin, H.; Zhu, Y.; Liu, X.; Qin, L.; Bañuelos, G.S.; Wang, Z. Soil selenium concentration and residents daily dietary intake in a selenosis area: A preliminary study in Yutangba Village, Enshi City, China. Bull. Environ. Contam. Toxicol. 2020, 105, 798–805.
  31. Yuan, L.; Yin, X.; Zhu, Y.; Li, F.; Huang, Y.; Liu, Y.; Lin, Z. Selenium in plants and soils, and selenosis in Enshi, China: Implications for selenium biofortification. In Phytoremediation and Biofortification; Springer: Dordrecht, The Netherlands, 2012; pp. 7–31.
  32. Gheorghiu, M.L.; Badiu, C. Selenium involvement in mitochondrial function in thyroid disorders. Hormones 2020, 19, 25–30.
  33. Zhang, Z.; Li, S.; Jiang, H.; Liu, B.; Lv, Z.; Guo, C.; Zhang, H. Effects of selenium on apoptosis and abnormal amino acid metabolism induced by excess fatty acid in isolated rat hepatocytes. Mol. Nutr. Food Res. 2017, 61, 1700016.
  34. Chawla, R.; Filippini, T.; Loomba, R.; Cilloni, S.; Dhillon, K.S.; Vinceti, M. Exposure to a high selenium environment in Punjab, India: Biomarkers and health conditions. Sci. Total Environ. 2020, 719, 134541.
  35. Hasan, M.A.; Ahmed, K.M.; Sracek, O.; Bhattacharya, P.; Von Broemssen, M.; Broms, S.; Fogelström, J.; Mazumder, M.L.; Jacks, G. Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrogeol. J. 2007, 15, 1507–1522.
  36. Saha, G.C.; Ali, M.A. Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci. Total Environ. 2007, 379, 180–189.
  37. Rahman, M.M.; Dong, Z.; Naidu, R. Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere 2015, 139, 54–64.
  38. Hasan, M.K.; Shahriar, A.; Jim, K.U. Water pollution in Bangladesh and its impact on public health. Heliyon 2019, 5, e02145.
  39. Chakraborti, D.; Rahman, M.M.; Ahamed, S.; Dutta, R.N.; Pati, S.; Mukherjee, S.C. Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 2016, 152, 520–529.
  40. Li, Y.; Bi, Y.; Mi, W.; Xie, S.; Ji, L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. 2021, 406, 124337.
  41. Nath, A.; Samanta, S.; Banerjee, S.; Danda, A.A.; Hazra, S. Threat of arsenic contamination, salinity and water pollution in agricultural practices of Sundarban Delta, India, and mitigation strategies. SN Appl. Sci. 2021, 3, 1–15.
  42. Rahman, A.; Mondal, N.; Fauzia, F. Arsenic enrichment and its natural background in groundwater at the proximity of active floodplains of Ganga River, northern India. Chemosphere 2021, 265, 129096.
  43. Alsubih, M.; El Morabet, R.; Khan, R.A.; Khan, N.A.; ul Haq Khan, M.; Ahmed, S.; Qadir, A.; Changani, F. Occurrence and health risk assessment of arsenic and heavy metals in groundwater of three industrial areas in Delhi, India. Environ. Sci. Pollut. Res. 2021, 28, 63017–63031.
  44. Wu, R.; Podgorski, J.; Berg, M.; Polya, D.A. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environ. Geochem. Health 2021, 43, 2649–2664.
  45. Tong, J.; Guo, H.; Wei, C. Arsenic contamination of the soil–wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China. Sci. Total Environ. 2014, 496, 479–487.
  46. Zhang, Y.; Xu, B.; Guo, Z.; Han, J.; Li, H.; Jin, L.; Chen, F.; Xiong, Y. Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J. Environ. Manag. 2019, 237, 163–169.
  47. Han, L.; Gao, B.; Hao, H.; Lu, J.; Xu, D. Arsenic pollution of sediments in China: An assessment by geochemical baseline. Sci. Total Environ. 2019, 651, 1983–1991.
  48. Gong, Y.; Qu, Y.; Yang, S.; Tao, S.; Shi, T.; Liu, Q.; Chen, Y.; Wu, Y.; Ma, J. Status of arsenic accumulation in agricultural soils across China (1985–2016). Environ. Res. 2020, 186, 109525.
  49. Ran, H.; Guo, Z.; Yi, L.; Xiao, X.; Zhang, L.; Hu, Z.; Li, C.; Zhang, Y. Pollution characteristics and source identification of soil metal (loid) s at an abandoned arsenic-containing mine, China. J. Hazard. Mater. 2021, 413, 125382.
  50. Li, C. Arsenic pollution in shallow drinking wells in Yuncheng Basin, China: Occurrence and mechanisms. In Environmental Arsenic in a Changing World; CRC Press: Boca Raton, FL, USA, 2019; pp. 613–614.
  51. Kanel, S.R.; Malla, G.B.; Choi, H. Modeling and study of the mechanism of mobilization of arsenic contamination in the groundwater of Nepal in South Asia. Clean Technol. Environ. Policy 2013, 15, 1077–1082.
  52. Mueller, B.; Chan, M.C.; Hug, S.J. Unique Geochemistry of Arsenic-Contaminated Groundwater and Corresponding Mitigation Efforts in Southern Nepal. In ACS EST Water; ACS Publications: Washington, DC, USA, 2023.
  53. Phan, K.; Sthiannopkao, S.; Kim, K.-W.; Wong, M.H.; Sao, V.; Hashim, J.H.; Yasin, M.S.M.; Aljunid, S.M. Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res. 2010, 44, 5777–5788.
  54. Postma, D.; Larsen, F.; Thai, N.T.; Trang, P.T.K.; Jakobsen, R.; Nhan, P.Q.; Long, T.V.; Viet, P.H.; Murray, A.S. Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nat. Geosci. 2012, 5, 656–661.
  55. Van Geen, A.; Win, K.H.; Zaw, T.; Naing, W.; Mey, J.L.; Mailloux, B. Confirmation of elevated arsenic levels in groundwater of Myanmar. Sci. Total Environ. 2014, 478, 21–24.
  56. Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319.
  57. Tabassum, R.A.; Shahid, M.; Dumat, C.; Niazi, N.K.; Khalid, S.; Shah, N.S.; Imran, M.; Khalid, S. Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: Effect of sampling area, depth, and source. Environ. Sci. Pollut. Res. 2019, 26, 20018–20029.
  58. Ur Rehman, H.; Ahmed, S.; Ur Rahman, M.; Mehmood, M.S. Arsenic contamination, induced symptoms, and health risk assessment in groundwater of Lahore, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 49796–49807.
  59. Jat Baloch, M.Y.; Zhang, W.; Zhang, D.; Al Shoumik, B.A.; Iqbal, J.; Li, S.; Chai, J.; Farooq, M.A.; Parkash, A. Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 13325.
  60. Masood, N.; Farooqi, A.; Zafar, M.I. Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: A case study. Environ. Monit. Assess. 2019, 191, 1–15.
  61. Ashraf, A.; Chen, X.; Ramamurthy, R. Modelling heavy metals contamination in groundwater of Southern Punjab, Pakistan. Int. J. Environ. Sci. Technol. 2021, 18, 2221–2236.
  62. Winkel, L.; Berg, M.; Stengel, C.; Rosenberg, T. Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia. Appl. Geochem. 2008, 23, 3019–3028.
  63. Barringer, J.L.; Mumford, A.; Young, L.Y.; Reilly, P.A.; Bonin, J.L.; Rosman, R. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Res. 2010, 44, 5532–5544.
  64. Sorg, T.J.; Chen, A.S.; Wang, L. Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Res. 2014, 48, 156–169.
  65. Moncur, M.C.; Paktunc, D.; Birks, S.J.; Ptacek, C.J.; Welsh, B.; Thibault, Y. Source and distribution of naturally occurring arsenic in groundwater from Alberta’s Southern Oil Sands Regions. Appl. Geochem. 2015, 62, 171–185.
  66. Bailey, A.S.; Jamieson, H.E.; Radková, A.B. Geochemical characterization of dust from arsenic-bearing tailings, Giant Mine, Canada. Appl. Geochem. 2021, 135, 105119.
  67. Francisca, F.M.; Perez, M.E.C. Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environ. Geochem. Health 2009, 31, 673.
  68. Leybourne, M.I.; Cameron, E.M. Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem. Geol. 2008, 247, 208–228.
  69. Parga, J.R.; Cocke, D.L.; Valenzuela, J.L.; Gomes, J.A.; Kesmez, M.; Irwin, G.; Moreno, H.; Weir, M. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico. J. Hazard. Mater. 2005, 124, 247–254.
  70. Rowland, H.A.; Omoregie, E.O.; Millot, R.; Jimenez, C.; Mertens, J.; Baciu, C.; Hug, S.J.; Berg, M. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 2011, 26, 1–17.
  71. Mudzielwana, R.; Gitari, M.W.; Akinyemi, S.A.; Talabi, A.O.; Ndungu, P. Hydrogeochemical characteristics of arsenic rich groundwater in Greater Giyani Municipality, Limpopo Province, South Africa. Groundw. Sustain. Dev. 2020, 10, 100336.
  72. Shaji, E.; Santosh, M.; Sarath, K.; Prakash, P.; Deepchand, V.; Divya, B. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2020, 12, 101079.
  73. Lampis, S.; Zonaro, E.; Bertolini, C.; Cecconi, D.; Monti, F.; Micaroni, M.; Turner, R.J.; Butler, C.S.; Vallini, G. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. J. Hazard. Mater. 2017, 324, 3–14.
  74. Tsai, S.-L.; Singh, S.; Chen, W. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr. Opin. Biotechnol. 2009, 20, 659–667.
  75. Churbanov, M.; Snopatin, G.; Shiryaev, V.; Plotnichenko, V.; Dianov, E. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics. J. Non-Cryst. Solids 2011, 357, 2352–2357.
  76. Das, A.; Shamirian, A.; Snee, P.T. Arsenic silylamide: An effective precursor for arsenide semiconductor nanocrystal synthesis. Chem. Mater. 2016, 28, 4058–4064.
  77. Lechtman, H.; Klein, S. The production of copper–arsenic alloys (arsenic bronze) by cosmelting: Modern experiment, ancient practice. J. Archaeol. Sci. 1999, 26, 497–526.
  78. Fitzmaurice, A.G.; Bilgin, A.A.; O’Day, P.A.; Illera, V.; Burris, D.R.; Reisinger, H.J.; Hering, J.G. Geochemical and hydrologic controls on the mobilization of arsenic derived from herbicide application. Appl. Geochem. 2009, 24, 2152–2162.
  79. Qi, Y.; Donahoe, R.J. The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ. 2008, 405, 246–254.
  80. Kazi, F.K.M.; Cooper, P.A. Method to recover and reuse chromated copper arsenate wood preservative from spent treated wood. Waste Manag. 2006, 26, 182–188.
  81. Peryea, F.; Creger, T. Vertical distribution of lead and arsenic in soils contaminated with lead arsenate pesticide residues. Water Air Soil Pollut. 1994, 78, 297–306.
  82. Hu, Y.; Cheng, H.; Tao, S.; Schnoor, J.L. China’s ban on phenylarsonic feed additives, a major step toward reducing the human and ecosystem health risk from arsenic. Environ. Sci. Technol. 2019, 53, 12177–12187.
  83. Douer, D.; Tallman, M.S. Arsenic trioxide: New clinical experience with an old medication in hematologic malignancies. J. Clin. Oncol. 2005, 23, 2396–2410.
  84. Liu, J.T.; Bain, L.J. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol. Appl. Pharmacol. 2014, 281, 243–253.
  85. Prakash, C.; Soni, M.; Kumar, V. Biochemical and molecular alterations following arsenic-induced oxidative stress and mitochondrial dysfunction in rat brain. Biol. Trace Elem. Res. 2015, 167, 121–129.
  86. Kitchin, K.T.; Wallace, K. Arsenite binding to synthetic peptides: The effect of increasing length between two cysteines. J. Biochem. Mol. Toxicol. 2006, 20, 35–38.
  87. Rosenblatt, A.E.; Burnstein, K.L. Inhibition of androgen receptor transcriptional activity as a novel mechanism of action of arsenic. Mol. Endocrinol. 2009, 23, 412–421.
  88. Ter Welle, H.; Slater, E. Uncoupling of respiratory-chain phosphorylation by arsenate and evidence for the existence of a stable X? Pintermediate of oxidative phosphorylation. Biochim. Et Biophys. Acta. Enzymol. 1964, 89, 385–388.
  89. Yu, R.C.; Hsu, K.-H.; Chen, C.-J.; Froines, J.R. Arsenic methylation capacity and skin cancer. Cancer Epidemiol. Prev. Biomark. 2000, 9, 1259–1262.
  90. Ferreccio, C.; González, C.; Milosavjlevic, V.; Marshall, G.; Sancha, A.M.; Smith, A.H. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 2000, 673–679.
  91. Lee, A.M.; Fraumeni Jr, J.F. Arsenic and respiratory cancer in man: An occupational study. J. Natl. Cancer Inst. 1969, 42, 1045–1052.
  92. Bates, M.N.; Rey, O.A.; Biggs, M.L.; Hopenhayn, C.; Moore, L.E.; Kalman, D.; Steinmaus, C.; Smith, A.H. Case-control study of bladder cancer and exposure to arsenic in Argentina. Am. J. Epidemiol. 2004, 159, 381–389.
  93. Wang, W.; Cheng, S.; Zhang, D. Association of inorganic arsenic exposure with liver cancer mortality: A meta-analysis. Environ. Res. 2014, 135, 120–125.
  94. Ahsan, H.; Chen, Y.; Parvez, F.; Zablotska, L.; Argos, M.; Hussain, I.; Momotaj, H.; Levy, D.; Cheng, Z.; Slavkovich, V. Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: Baseline results from the Health Effects of Arsenic Longitudinal Study. Am. J. Epidemiol. 2006, 163, 1138–1148.
  95. Halatek, T.; Sinczuk-Walczak, H.; Rabieh, S.; Wasowicz, W. Association between occupational exposure to arsenic and neurological, respiratory and renal effects. Toxicol. Appl. Pharmacol. 2009, 239, 193–199.
  96. Mazumder, D.G. Effect of chronic intake of arsenic-contaminated water on liver. Toxicol. Appl. Pharmacol. 2005, 206, 169–175.
  97. Islam, L.N.; Nabi, A.; Rahman, M.M.; Khan, M.A.; Kazi, A.I. Association of clinical complications with nutritional status and the prevalence of leukopenia among arsenic patients in Bangladesh. Int. J. Environ. Res. Public Health 2004, 1, 74–82.
  98. Chen, Y.; Graziano, J.H.; Parvez, F.; Liu, M.; Slavkovich, V.; Kalra, T.; Argos, M.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: Prospective cohort study. Bmj 2011, 342, d2431.
  99. Chen, Y.; Wu, F.; Liu, M.; Parvez, F.; Slavkovich, V.; Eunus, M.; Ahmed, A.; Argos, M.; Islam, T.; Rakibuz-Zaman, M. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ. Health Perspect. 2013, 121, 832–838.
  100. Heck, J.E.; Chen, Y.; Grann, V.R.; Slavkovich, V.; Parvez, F.; Ahsan, H. Arsenic exposure and anemia in Bangladesh: A population-based study. J. Occup. Environ. Med. 2008, 50, 80–87.
  101. Hopenhayn, C.; Bush, H.M.; Bingcang, A.; Hertz-Picciotto, I. Association between arsenic exposure from drinking water and anemia during pregnancy. J. Occup. Environ. Med. 2006, 48, 635–643.
  102. Tanmoy, P.; Saha, N.C. Environmental arsenic and selenium contamination and approaches towards its bioremediation through the exploration of microbial adaptations: A review. Pedosphere 2019, 29, 554–568.
  103. Moriya, F.; Furumiya, J.; Hashimoto, Y. A case of fatal arsenic poisoning. Forensic Toxicol. 2006, 24, 88–91.
  104. Tanaka, M.; Fujiwara, T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflügers Arch. -Eur. J. Physiol. 2008, 456, 671–677.
  105. Uluisik, I.; Karakaya, H.C.; Koc, A. The importance of boron in biological systems. J. Trace Elem. Med. Biol. 2018, 45, 156–162.
  106. Concha, G.; Broberg, K.; Grandér, M.; Cardozo, A.; Palm, B.; Vahter, M. High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina. Environ. Sci. Technol. 2010, 44, 6875–6880.
  107. Martos-Villa, R.; Mata, M.P.; Williams, L.B.; Nieto, F.; Arroyo Rey, X.; Sainz-Díaz, C.I. Evidence of Hydrocarbon-Rich Fluid Interaction with Clays: Clay Mineralogy and Boron Isotope Data from Gulf of Cádiz Mud Volcano Sediments. Minerals 2020, 10, 651.
  108. Hitit, A.; Yazici, Z.O.; Şahin, H.; Öztürk, P.; Aşgın, A.M.; Hitit, B. A novel Ni-based bulk metallic glass containing high amount of tungsten and boron. J. Alloy. Compd. 2019, 807, 151661.
  109. Vargas-Gonzalez, L.; Speyer, R.F.; Campbell, J. Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics. Int. J. Appl. Ceram. Technol. 2010, 7, 643–651.
  110. Sarac, N.; Ugur, A.; Boran, R.; Elgin, E.S. The use of boron compounds for stabilization of lipase from Pseudomonas aeruginosa ES3 for the detergent industry. J. Surfactants Deterg. 2015, 18, 275–285.
  111. Da Silva, R.C.; Baird, R.; Degryse, F.; McLaughlin, M.J. Slow and Fast-Release Boron Sources in Potash Fertilizers: Spatial Variability, Nutrient Dissolution and Plant Uptake. Soil Sci. Soc. Am. J. 2018, 82, 1437–1448.
  112. Jin, E.; Li, S.; Ren, M.; Hu, Q.; Gu, Y.; Li, K. Boron affects immune function through modulation of splenic T lymphocyte subsets, cytokine secretion, and lymphocyte proliferation and apoptosis in rats. Biol. Trace Elem. Res. 2017, 178, 261–275.
  113. Routray, I.; Ali, S. Boron induces lymphocyte proliferation and modulates the priming effects of lipopolysaccharide on macrophages. PLoS ONE 2016, 11, e0150607.
  114. Hunt, C.; Herbel, J. Effects of dietary boron on calcium and mineral metabolism in the streptozotocin-injected, vitamin D3-deprived rat. Magnes. Trace Elem. 1991, 10, 387–408.
  115. Sharma, A.; Mani, V.; Pal, R.P.; Sarkar, S.; Datt, C. Boron supplementation in peripartum Murrah buffaloes: The effect on calcium homeostasis, bone metabolism, endocrine and antioxidant status. J. Trace Elem. Med. Biol. 2020, 62, 126623.
  116. Kabu, M.; Akosman, M.S. Biological effects of boron. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 57–75.
  117. Donoiu, I.; Militaru, C.; Obleagă, O.; Hunter, J.M.; Neamţu, J.; Biţă, A.; Scorei, I.R.; Rogoveanu, O.C. Effects of boron-containing compounds on cardiovascular disease risk factors–a review. J. Trace Elem. Med. Biol. 2018, 50, 47–56.
  118. Farfán-García, E.; Castillo-Mendieta, N.; Ciprés-Flores, F.; Padilla-Martínez, I.; Trujillo-Ferrara, J.; Soriano-Ursúa, M. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol. Lett. 2016, 258, 115–125.
  119. Barth, R.F.; Vicente, M.H.; Harling, O.K.; Kiger, W.; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 1–21.
  120. Kohno, J.; Kawahata, T.; Otake, T.; Morimoto, M.; Mori, H.; Ueba, N.; Nishio, M.; Kinumaki, A.; Komatsubara, S.; Kawashima, K. Boromycin, an anti-HIV antibiotic. Biosci. Biotechnol. Biochem. 1996, 60, 1036–1037.
  121. Irschik, H.; Schummer, D.; Gerth, K.; Höfle, G.; Reichenbach, H. The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum. J. Antibiot. 1995, 48, 26–30.
  122. Lee, J.; Dewick, P.; Gorst-Allman, C.; Spreafico, F.; Kowal, C.; Chang, C.; McInnes, A.; Walter, J.; Keller, P.; Floss, H. Further studies on the biosynthesis of the boron-containing antibiotic aplasmomycin. J. Am. Chem. Soc. 1987, 109, 5426–5432.
  123. Harris, W.R.; Amin, S.A.; Küpper, F.C.; Green, D.H.; Carrano, C.J. Borate binding to siderophores: Structure and stability. J. Am. Chem. Soc. 2007, 129, 12263–12271.
  124. Wolkenstein, K.; Gross, J.H.; Falk, H. Boron-containing organic pigments from a Jurassic red alga. Proc. Natl. Acad. Sci. USA 2010, 107, 19374–19378.
  125. USGS. Mineral Commodity Summaries; Nova Science Publishers: Hauppauge, NY, USA, 2011.
  126. Zanetti, M.; Camino, G.; Canavese, D.; Morgan, A.B.; Lamelas, F.J.; Wilkie, C.A. Fire retardant halogen− antimony− clay synergism in polypropylene layered silicate nanocomposites. Chem. Mater. 2002, 14, 189–193.
  127. Hu, X.; Guo, X.; He, M.; Li, S. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores. J. Environ. Sci. 2016, 44, 171–179.
  128. Filella, M.; Belzile, N.; Lett, M.-C. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions. Earth-Sci. Rev. 2007, 80, 195–217.
  129. Chen, C.; Fu, K.; Lu, Y.; Zhu, J.; Xue, L.; Hu, Y.; Zhang, X. Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv. 2015, 5, 30793–30800.
  130. Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int. 2011, 2011, 571242.
  131. Tanoue, A.; Yoo, W.J.; Kobayashi, S. Antimony/N-hydroxyphthalimide as a catalyst system for cross-dehydrogenative coupling reactions under aerobic conditions. Adv. Synth. Catal. 2013, 355, 269–273.
  132. Kelepertsis, A.; Alexakis, D.; Skordas, K. Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ. Geol. 2006, 50, 76–84.
  133. Cavallo, D.; Iavicoli, I.; Setini, A.; Marinaccio, A.; Perniconi, B.; Carelli, G.; Iavicoli, S. Genotoxic risk and oxidative DNA damage in workers exposed to antimony trioxide. Environ. Mol. Mutagen. 2002, 40, 184–189.
  134. An, Y.-J.; Kim, M. Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere 2009, 74, 654–659.
  135. Presentato, A.; Piacenza, E.; Anikovskiy, M.; Cappelletti, M.; Zannoni, D.; Turner, R.J. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb. Cell Factories 2016, 15, 204.
  136. Presentato, A.; Piacenza, E.; Darbandi, A.; Anikovskiy, M.; Cappelletti, M.; Zannoni, D.; Turner, R.J. Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci. Rep. 2018, 8, 3923.
  137. Wedepohl, K.H. The composition of the continental crust. Geochim. Et Cosmochim. Acta 1995, 59, 1217–1232.
  138. Kim, D.-H.; Kim, M.-G.; Jiang, S.; Lee, J.-H.; Hur, H.-G. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1. Environ. Sci. Technol. 2013, 47, 8709–8715.
  139. Zare, B.; Faramarzi, M.A.; Sepehrizadeh, Z.; Shakibaie, M.; Rezaie, S.; Shahverdi, A.R. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater. Res. Bull. 2012, 47, 3719–3725.
  140. Zare, B.; Nami, M.; Shahverdi, A.-R. Tracing tellurium and its nanostructures in biology. Biol. Trace Elem. Res. 2017, 180, 171–181.
  141. Ba, L.A.; Döring, M.; Jamier, V.; Jacob, C. Tellurium: An element with great biological potency and potential. Org. Biomol. Chem. 2010, 8, 4203–4216.
  142. Brodsky, M.; Halpert, G.; Albeck, M.; Sredni, B. The anti-inflammatory effects of the tellurium redox modulating compound, AS101, are associated with regulation of NFκB signaling pathway and nitric oxide induction in macrophages. J. Inflamm. 2010, 7, 3.
  143. Halpert, G.; Sredni, B. The effect of the novel tellurium compound AS101 on autoimmune diseases. Autoimmun. Rev. 2014, 13, 1230–1235.
  144. Tavakoli, P.; Ghaffarifar, F.; Delavari, H.; KarimiPourSaryazdi, A.; Dayer, M.S.; Nasiri, V.; Ahmadi, S. Synthesis of Tellurium Oxide (TeO2) Nanorods and Nanoflakes and Evaluation of Its Efficacy Against Leishmania major In Vitro and In Vivo. Acta Parasitol. 2021, 67, 143–152.
  145. Zare, B.; Sepehrizadeh, Z.; Faramarzi, M.A.; Soltany-Rezaee-Rad, M.; Rezaie, S.; Shahverdi, A.R. Antifungal activity of biogenic tellurium nanoparticles against C andida albicans and its effects on squalene monooxygenase gene expression. Biotechnol. Appl. Biochem. 2014, 61, 395–400.
  146. Gerhardsson, L. Tellurium. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1217–1228.
  147. Marwede, M.; Reller, A. Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resour. Conserv. Recycl. 2012, 69, 35–49.
  148. Zheng, J.; Yang, L.; Deng, Y.; Zhang, C.; Zhang, Y.; Xiong, S.; Ding, C.; Zhao, J.; Liao, C.; Gong, D. A review of public and environmental consequences of organic germanium. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1384–1409.
  149. Wiche, O.; Székely, B.; Moschner, C.; Heilmeier, H. Germanium in the soil-plant system—A review. Environ. Sci. Pollut. Res. 2018, 25, 31938–31956.
  150. Ji, X.; Page, R.L.; Chaudhuri, S.; Liu, W.; Yu, S.Y.; Mohney, S.E.; Badding, J.V.; Gopalan, V. Single-Crystal Germanium Core Optoelectronic Fibers. Adv. Opt. Mater. 2017, 5, 1600592.
  151. Shiryaev, V.; Karaksina, E.; Churbanov, M.; Kotereva, T.; Stepanov, B.; Ketkova, L.; Evdokimov, I.; Koltashev, V.; Plotnichenko, V.; Filatov, A. Special pure germanium-rich Ga-Ge-As-Se glasses for active mid-IR fiber optics. Mater. Res. Bull. 2018, 107, 430–437.
  152. Yu, B.; Sun, X.; Calebotta, G.; Dholakia, G.; Meyyappan, M. One-dimensional germanium nanowires for future electronics. J. Clust. Sci. 2006, 17, 579–597.
  153. Aliane, A.; Ouvrier-Buffet, J.; Ludurczak, W.; André, L.; Kaya, H.; Vialle, C.; Benwadih, M.; Goudon, V.; Becker, S.; Hartmann, J. Fabrication and characterization of sensitive vertical PiN germanium photodiodes as infrared detectors. Semicond. Sci. Technol. 2020, 35, 035013.
  154. Yamazaki, N.; Nakahama, S.; Hirao, A.; Shiraishi, Y.; Phung, H.M. Anionic Polymerization of p-Styrenyl Substituted Derivatives of Silicon, Germanium and Tin. In Contemporary Topics in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1984; pp. 379–385.
  155. Zhang, J.; Zhang, B.; Li, W.; Ouyang, B.; Fan, M.; Wang, H. Behaviour of silicon ointment for power-cable insulation under external heating. J. Therm. Anal. Calorim. 2020, 140, 2749–2756.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 217
Revisions: 2 times (View History)
Update Date: 05 May 2023
1000/1000