Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 500 word(s) 500 2020-12-15 08:01:24

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Guo, L. MT-CYB Gene. Encyclopedia. Available online: (accessed on 20 May 2024).
Guo L. MT-CYB Gene. Encyclopedia. Available at: Accessed May 20, 2024.
Guo, Lily. "MT-CYB Gene" Encyclopedia, (accessed May 20, 2024).
Guo, L. (2020, December 23). MT-CYB Gene. In Encyclopedia.
Guo, Lily. "MT-CYB Gene." Encyclopedia. Web. 23 December, 2020.

mitochondrially encoded cytochrome b


1. Introduction

The MT-CYB gene provides instructions for making a protein called cytochrome b. This protein plays a key role in structures called mitochondria, which convert the energy from food into a form that cells can use. Cytochrome b is one of 11 components of a group of proteins called complex III. In mitochondria, complex III performs one step of a process known as oxidative phosphorylation, in which oxygen and simple sugars are used to create adenosine triphosphate (ATP), the cell's main energy source. During oxidative phosphorylation, the protein complexes, including complex III, drive the production of ATP through a step-by-step transfer of negatively charged particles called electrons. Cytochrome b is involved in the transfer of these particles through complex III.

Although most DNA is packaged in chromosomes within the nucleus (nuclear DNA), mitochondria also have a small amount of their own DNA, called mitochondrial DNA (mtDNA). This type of DNA contains many genes essential for normal mitochondrial function. Cytochrome b is the only component of complex III that is produced from a gene found in mitochondrial DNA.

2. Health Conditions Related to Genetic Changes

2.1. Mitochondrial complex III deficiency

Mutations in the MT-CYB gene can cause mitochondrial complex III deficiency. When caused by mutations in this gene, the condition is usually characterized by muscle weakness (myopathy) and pain, especially during exercise (exercise intolerance). More severely affected individuals can have problems with other body systems, including the liver, kidneys, heart, and brain.

Most MT-CYB gene mutations that cause mitochondrial complex III deficiency change single protein building blocks (amino acids) in the cytochrome b protein or lead to an abnormally short protein. These cytochrome b alterations impair the formation of complex III, severely reducing the complex's activity and oxidative phosphorylation. Researchers believe that impaired oxidative phosphorylation can lead to cell death by reducing the amount of energy available in the cell. It is thought that tissues that require a lot of energy, such as those in the muscles, brain, heart, liver, and kidneys, are most affected by a reduction in oxidative phosphorylation. Damage to these tissues and organs leads to the various features of mitochondrial complex III deficiency.

The location of the MT-CYB gene in mitochondrial DNA (mtDNA) may help explain why some people have more severe features of the condition than others. Most of the body's cells contain thousands of mitochondria, each with one or more copies of mitochondrial DNA. These cells can have a mix of mitochondria containing mutated and unmutated DNA (heteroplasmy). The severity of mitochondrial complex III deficiency caused by MT-CYB gene mutations is thought to be associated with the percentage of mitochondria with the mitochondrial DNA mutation. In most people with MT-CYB-related mitochondrial complex III deficiency, the percentage of mutated mitochondrial DNA is highest in the skeletal muscles, which explains the finding of myopathy in these individuals. It is unclear why the mutation is most prevalent in muscle tissue.

3. Other Names for This Gene

  • COB

  • CYTB

  • cytochrome b

  • cytochrome b (mitochondrion) [Homo sapiens]


  • UQCR3


  1. Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, IwataS, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S. Exercise intolerance due tomutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med. 1999 Sep30;341(14):1037-44.
  2. Blakely EL, Mitchell AL, Fisher N, Meunier B, Nijtmans LG, Schaefer AM,Jackson MJ, Turnbull DM, Taylor RW. A mitochondrial cytochrome b mutation causingsevere respiratory chain enzyme deficiency in humans and yeast. FEBS J. 2005Jul;272(14):3583-92.
  3. Gil Borlado MC, Moreno Lastres D, Gonzalez Hoyuela M, Moran M, Blazquez A,Pello R, Marin Buera L, Gabaldon T, Garcia Peñas JJ, Martín MA, Arenas J, Ugalde C. Impact of the mitochondrial genetic background in complex III deficiency. PLoSOne. 2010 Sep 17;5(9). pii: e12801. doi: 10.1371/journal.pone.0012801.
  4. Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Respiratory complex IIIdysfunction in humans and the use of yeast as a model organism to studymitochondrial myopathy and associated diseases. Biochim Biophys Acta. 2013Nov-Dec;1827(11-12):1346-61. doi: 10.1016/j.bbabio.2012.11.015.Review.
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 420
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 23 Dec 2020
Video Production Service