Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2346 word(s) 2346 2020-12-09 06:07:06 |
2 format correction -285 word(s) 2061 2020-12-18 13:31:59 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Menaa, F. Therapies for Metastatic Melanoma. Encyclopedia. Available online: https://encyclopedia.pub/entry/3536 (accessed on 14 June 2024).
Menaa F. Therapies for Metastatic Melanoma. Encyclopedia. Available at: https://encyclopedia.pub/entry/3536. Accessed June 14, 2024.
Menaa, Farid. "Therapies for Metastatic Melanoma" Encyclopedia, https://encyclopedia.pub/entry/3536 (accessed June 14, 2024).
Menaa, F. (2020, December 13). Therapies for Metastatic Melanoma. In Encyclopedia. https://encyclopedia.pub/entry/3536
Menaa, Farid. "Therapies for Metastatic Melanoma." Encyclopedia. Web. 13 December, 2020.
Therapies for Metastatic Melanoma
Edit

The work suggests and describes the need of multidisciplinarity to develop promising theranostic strategies in terms of efficacy and safety (i.e. oncogene-directed therapy combined to immunotherapy, genomics for personalized medicine, nanomedicine to overcome low free-drug bioavailability, and targeting, systematic search of "melanoma stem cells" which may harbor key mutations) for patients with advanced (metastatic) melanoma.

melanoma metastasis immunotherapy oncogene nanomedicine genomics theranostics drug targets RAF stem cells

1. Introduction 

Melanoma (from Greek—melas: "dark") is a tumor originated from malignant transformation of melanocytes (i.e., melanin pigment-producing cells) that can be found in the skin, bowel, and eye [1].

According to the estimations provided by the American Cancer Society (ACS) in 2010, 68.130 new cases of melanomas were diagnosed and approximately 8.700 people died from this cancer [2]. The incidence of melanoma in the US has increased of about three folds between the last three decades (i.e., from 7.89 per 100.000 in 1975 to 22.52 per 100.000 in 2008) [3]. Clinical and epidemiological data suggest that several risk factors can contribute to the increased incidence: (i) extensive or repeated exposure to sunlight [4]; (ii) individuals with family history of melanoma (5–12% of all reported cases) [5]; (iii) high nevi count and dysplastic nevus [6], thereby suggesting the need to perform a biopsy of the suspicious lesion. The biopsy permits to establish not only an accurate diagnosis but also to define the optimal staging and proceed earlier with the appropriate therapy (e.g., surgery, chemotherapy, and/or radiotherapy).

Metastatic melanoma (i.e., advanced malignant melanoma) is the most aggressive form of skin cancer with a median overall survival (OS) of only few months (8 to 18 months) [2]. This fact could be mainly explained by the modest results obtained with dacarbazine (DITC) and high-dose interleukin 2 (HD IL-2), the two unique FDA-approved therapies for metastatic melanoma until 2011 [7][8][9]. Indeed, DITC is limited by a low response rate (RR of 5% to 15%) and an insufficient OS (about 8 months) [7]. Besides, HD IL-2 is also limited by a low RR (6% to 10%), a short duration of responses in most patients as well as a severe toxicity [8][9]. Since 2011, 3 new agents have been approved for the treatment of advanced melanoma by the Food and Drug Administration (FDA) [10][11][12]: (i) vemurafenib, a mutant

inhibitor, recommended for unresectable or metastatic melanoma [10]; (ii) ipilimumab, an anti-CTLA-4 monoclonal antibody, also preconized for the treatment of unresectable or metastatic melanoma [11]; (iii) pegylated interferon alpha-2b (PEG-IFN), a covalent conjugate of the polyethylene glycol (PEG) with the recombinant α-2b interferon (IFN), long-time used to treat chronic hepatitis patients infected with hepatitis c virus [12], and currently recommended as adjuvant treatment for stage III melanoma [13].

Vemurafenib has emerged as a highly selective mutant inhibitor with little effect on wild type B-RAF, thereby demonstrating significant tumor regression (> 40%) while minimizing side effects in a large number of patients with metastatic melanoma [14][15][16]. Nevertheless, the single use of this oncogene-targeted agent presents the following main disadvantages: (i) short median duration of response (MDR) and progression-free survival (PFS) (i.e., about 6 months only) [16]; (ii) low RR in patients who harbor mutations other than V600E. The proportion of these patients ranges between 10% and 30% (e.g., V600K is present in 5% to 20% of patients with melanoma) [17][18].

Ipilimumab was designed and developed to block the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), thereby increasing the T-cell activity and promoting antitumor activity in patients with cancers [19]. Thereby, in patients with unresectable or metastatic melanoma, ipilimumab plus DITC versus DITC alone significantly improved the OS (about 11 months versus 9 months, resp.) and RR (about 15% versus 10%, resp.) [20][21].

PEG-IFN, similarly to high-dose interferon (HDI or Intron A) [1][22], has been approved for the adjuvant treatment (after surgical resection) of stage III melanoma patients. This approval was mainly based on final results of a recent randomized phase III trial organized by the European Organization for Research and Treatment of Cancer (EORTC) 18991 that showed greater relapse-free survival (RFS of 45.6%) in comparison to observation (38.9%), although no significant effect on OS was noticed [12][23]. Previously, in an open-label phase 2 study, the efficacy and safety of PEG-IFN in combination with temozolomide were investigated in patients with metastatic melanoma without brain metastases [24]. The RR of this combination reached 31% of the patients, the median OS was 12 months, and no patient developed brain metastases while receiving study treatment, which was besides well tolerated. Up to date, and in the best of my knowledge, it remains unknown whether PEG-IFN can provide better efficacy and safety results than the biochemotherapy combining cisplatin, vinblastine, DTIC plus IL-2 (Proleukin), and interferon. Indeed, a recent phase 3 trial (SWOG S0008) only assessed the efficacy and safety of this biochemotherapy versus HDI in patients with high-risk melanoma [25]. The results showed major improvement in the median RFS in favor of biochemotherapy (4.3 years versus 1.9 years with HDI). OS, however, was exactly the same (56% at 5 years), and acute grade 4 toxicity was more frequent with biochemotherapy. All together, the biochemotherapy can be considered as a better adjuvant treatment than HDI. Currently, both HDI and PEG-IFN are considered as category 2B due to their limited benefits, and so will not be further detailed in this paper.

Eventually, in one hand, these new exciting chemotherapies represent a great hope for the physicians and patients with advanced melanoma. In the other hand, their respective limitations clearly emphasize the importance of developing novel treatment strategies (e.g., cell-based therapies, advanced and rational combinatorial therapeutic approaches, nanodrug formulations). These alternative therapeutic options might help to improve OS, PFS, RFS, RR, and MDR while minimizing toxic adverse events, thereby contributing in fine to the quality of the patient's life.

2. Latest FDA-Approved Drugs for Advanced/Metastatic Melanoma

Most patients with unresectable stage III or stage IV disease require systemic treatment rather than metastasectomy.

2.1. Oncogene-Directed Therapy: Mutant B-RAF Inhibitors

Melanoma is a molecularly heterogeneous disease with approximately half (40%–60%) of the cutaneous melanoma cells harboring an activating mutation in the B-RAF gene, which encodes a serine/threonine kinase protein kinase, and most of the mutations (>70%) are V600E (i.e., substitution of valine for glutamate at amino acid position 600) [17][26][27][28]. Because mutated B-RAF leads to constitutive activation of the mitogen-activated protein kinase pathway (MAPK) that, in turn, increases the cellular proliferation and drives the oncogenic activity [29][30], intensive research has consisted to selectively inhibit mutated B-RAF in patients with melanoma (e.g., studies with sorafenib, a multitargeted kinase inhibitor), but the results were globally disappointing due to off-target side effects mainly induced through inhibition of wild type B-RAF [14][31][32][33][34][35].

Among highly selective B-RAF inhibitors, only the recent FDA-approved vemurafenib (formerly PLX4032, currently marketed as Zelboraf and initially developed by Genentech Roche) is capable of silencing mutant B-RAFV600E without interfering with wild type B-RAF. Indeed, in a phase 2 clinical trial involving patients with metastatic melanoma harboring B-RAFV600E mutation (n=132), vemurafenib demonstrated substantial tumor regression in 81% of the cases, a RR of 52%, and a MDR of 6.8 months [14][15][16]. Further, in a phase 3 clinical trial (BRIM3) involving previously untreated patients (n=675), vemurafenib was much better than DITC in terms of RR (48% versus 5%, resp.), PFS (5.3 months versus 1.6 months, resp.), and percent of patients alive at six months (OS of 84% versus 64%, resp.) [10]. Also, in a recent open-label pilot study, it was stated that vemurafenib could be beneficial for previously treated metastatic melanoma patients with brain metastases [36]. Besides, common adverse events associated with vemurafenib included accelerated growth of cutaneous squamous cell carcinomas (SCCs) and keratoacanthomas [10][37][38][39][40], most probably through paradoxical activation of MAPK signaling (about 20–25% of the patients with advanced melanoma) [37][38][39][40].

Eventually, vemurafenib represents an excellent model for successful targeted anticancer therapy (i.e., high RR and low toxicity) in patients with B-RAFV600E mutations [41]. Nevertheless, these clinical benefits are counterbalanced by the relatively short MDR, high selectivity for the B-RAFV600E mutation, and related toxicities of the drug. Owing to consideration that 10% to 30% of patients have a non-B-RAFV600E mutation (e.g., B-RAFV600K mutation is present in 5% to 20% of melanoma patients) [17][18], further studies are required to examine the efficacy of vemurafenib, alone or in combination, in patients with a non-B-RAFV600E mutation. These studies are important to avoid useless administration of vemurafenib in a subset of patients, who might otherwise become resistant to the drug. Alternatively, rational combination of vemurafenib with other agents (e.g., ipilimumab) might circumvent an eventual drug resistance and/or further improve the clinical outcome of the patients (e.g., MDR, OS).

2.2. Immunotherapy: CTLA-4 Inhibitors

Melanoma is one of the most immunogenic tumors due to the presence of tumor infiltrating lymphocytes (TIL) in resected melanoma, clinical responses to immune stimulation, and occasional spontaneous regressions. CTLA-4 expression is necessary for activation of self-regulation of T cells, and so CTLA-4 inhibitors could represent serious therapeutic options to generate T-cell hyperresponsiveness and overcome tumor immune escape [19].

Up to date, ipilimumab (formerly MDX-010, MDX-101, or MDX-CTLA-4, currently marketed as Yervoy and initially developed by Bristol-Myers Squibb) is a fully human IgG1 monoclonal antibody that blocks CTLA-4, subsequently increasing the T-cell activity and promoting an antitumor activity and represents the only approved immunotherapeutic agent for systemic treatment [20]. In the first phase 3 randomized trial involving patients with previously treated unresectable stage III or IV melanoma (n=676), ipilimumab compared to the glycoprotein 100 peptide (gp100) vaccine demonstrated an improved median OS (10.1 months versus 6.4 months, resp.) and a much better RR (10.9% versus 1.5%, resp.), albeit the occurrence of toxicities with ipilimumab, including grade 3 or 4 immune-related adverse events (e.g., enterocolitis, hepatitis, and dermatitis) and deaths, was higher than with gp100 (10–15% versus 3%, resp.) [11]. Ipilimumab plus gp100, compared to gp100, did not improve the OS observed with ipilimumab alone (10.0 months versus 10.1 months, resp.) [11]. In the second phase 3 randomized trial involving previously untreated patients with metastatic melanoma (n=502), ipilimumab combined with DITC demonstrated a modest but statistically significant improvement in OS compared to DITC plus placebo (11.2 months versus 9.1 months, resp.) as well as a better overall RR (15.2% versus 10.3%, resp.) [20][21]. Interestingly, survival rates over the years were always significantly higher in the ipilimumab-DITC group than in the group treated with the single agent DITC (at 1 year: 47.3% versus 36.3%; at 2 years: 28.5% versus 17.9%; at 3 years: 20.8% versus 12.2%, resp.), clearly demonstrating that ipilimumab is able to confer a durable response (MDR of 19.3 months versus 8.1 months, resp.). Nevertheless, median PFS was barely improved (2.8 months versus 2.6 months, resp.). Also, grade 3 or 4 adverse events (e.g., hepatitis) occurred more frequently in patients treated with ipilimumab plus DITC than in patients treated with DITC (plus placebo) (56.3% versus 27.5%, resp.), although low rates of gastrointestinal events and no drug-related deaths occurred in the ipilimumab-DITC group [20][21].

Eventually, although the OS and MDR noticed with ipilimumab are higher than that one observed with vemurafenib, the most important limitation of this drug tested alone or in combination remains the modest RR. This strongly suggests a need for rational combination between ipilimumab and other commercially available free- or nanoencapsulated drugs (e.g., vemurafenib and bevacizumab, resp.) that might provide complementary clinical benefits.

3. Conclusions

The incidence of metastastic melanoma is increasing worldwide. Vemurafenib and ipilimumab, based on their respective success rates, are bringing hopes to physicians and patients. Vemurafenib has emerged as a highly selective B-RAFV600E mutant melanoma inhibitor and could display good response rates in patients with unresectable or metastatic melanoma. Nevertheless, its main disadvantage remains the short median duration response as well as its limited use to patients who harbor mutations other than B-RAFV600E (e.g., B-RAFV600K). Besides, ipilimumab was developed to block the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) in patients with unresectable or metastatic melanoma. Interestingly, ipilimumab presents the opposite main advantage and disadvantage than vemurafenib. Several clinical trials are underway to address the question of rational combination of those two approved drugs, together and/or separately with other potential therapeutic targets (PD-1, PD-L1, c-KIT, MEK1, VEGF-A…). Cell therapy such as adoptive T cell is encouraging. Nanoencapsulation of the recent FDA-approved free drugs (e.g., vemurafenib, ipilimumab), using proper nanocarriers, or rational combination of these free drugs with available adjuvant nanotherapeutics might be beneficial as they might enhance the overall pharmacological features (e.g., bioavailability and targeting). The importance of direct targeting of potential melanoma initiating/propagating cells within a given patient was not detailed in this paper but might be important in order to avoid immune resistance, immune escape, and disease relapse. Owing to consideration that the incidence of advanced/metastatic melanoma in the younger population is increasing, clinical trials in pediatric patients appear necessary. Eventually, the rational molecular or cellular combo therapy is a key strategy, as it shall beneficiate a larger number of patients. The recent results reported in this paper are quite exciting and, undeniably, constitute a new hope for patients and healthcare professionals.

References

  1. V. T. DeVita, T. S. Lawrence, and S. A. Rosenberg, DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 8th edition, 2008.
  2. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
  3. N. Howlader, L. A. G. Ries, A. B. Mariotto, M. E. Reichman, J. Ruhl, and K. A. Cronin, “Improved estimates of cancer-specific survival rates from population-based data,” Journal of the National Cancer Institute, vol. 102, no. 20, pp. 1584–1598, 2010.
  4. R. Bestak and G. M. Halliday, “Chronic low-dose UVA irradiation induces local suppression of contact hypersensitivity, Langerhans cell depletion and suppressor cell activation in C3H/HeJ mice,” Photochemistry and Photobiology, vol. 64, no. 6, pp. 969–974, 1996.
  5. F. G. Haluska and F. S. Hodi, “Molecular genetics of familial cutaneous melanoma,” Journal of Clinical Oncology, vol. 16, no. 2, pp. 670–682, 1998.
  6. K. H. Kraemer, M. M. Lee, A. D. Andrews, and W. C. Lambert, “The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer: the xeroderma pigmentosum paradigm,” Archives of Dermatology, vol. 130, no. 8, pp. 1018–1021, 1994.
  7. G. J. Hill, E. T. Krementz, and H. Z. Hill, “Dimethyl triazeno imidazole carboxamide and combination therapy for melanoma. IV. Late results after complete response to chemotherapy (Central Oncology Group Protocols 7130, 7131, and 7131A),” Cancer, vol. 53, no. 6, pp. 1299–1305, 1984.
  8. M. B. Atkins, M. T. Lotze, J. P. Dutcher et al., “High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993,” Journal of Clinical Oncology, vol. 17, no. 7, pp. 2105–2116, 1999.
  9. G. Q. Phan, P. Attia, S. M. Steinberg, D. E. White, and S. A. Rosenberg, “Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma,” Journal of Clinical Oncology, vol. 19, no. 15, pp. 3477–3482, 2001.
  10. P. B. Chapman, A. Hauschild, C. Robert et al., “Improved survival with vemurafenib in melanoma with BRAF V600E mutation,” The The New England Journal of Medicine, vol. 364, no. 26, pp. 2507–2516, 2011.
  11. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010.
  12. F. Carrat, F. Bani-Sadr, S. Pol et al., “Pegylated interferon alfa-2b versus standard interferon alfa-2b, plus ribavirin, for chronic hepatitis C in HIV-infected patients: a randomized controlled trial,” The Journal of the American Medical Association, vol. 292, no. 23, pp. 2839–2848, 2004.
  13. A. M. Eggermont, S. Suciu, M. Santinami et al., “Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial,” The Lancet, vol. 372, no. 9633, pp. 117–126, 2008.
  14. K. T. Flaherty, I. Puzanov, K. B. Kim et al., “Inhibition of mutated, activated BRAF in metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 9, pp. 809–819, 2010.
  15. K. S. M. Smalley and V. K. Sondak, “Melanoma—an unlikely poster child for personalized cancer therapy,” The New England Journal of Medicine, vol. 363, no. 9, pp. 876–878, 2010.
  16. A. Ribas, K. Kim, L. Schuchter, R. Gonzalez et al., “BRIM-2: an open label, multicenter phase II study of vemurafenib in previously treated patients with BRAF V600E mutation-positive metastatic melanoma,” Journal of Clinical Oncology, vol. 29, abstract no. 8509, 2011.
  17. L. Si, Y. Kong, X. Xu et al., “Prevalence of BRAF V600E mutation in Chinese melanoma patients: large scale analysis of BRAF and NRAS mutations in a 432-case cohort,” European Journal of Cancer, vol. 48, no. 1, pp. 94–100, 2012
  18. A. M. Menzies, L. Visintin, M. D. Chatfield et al., “Long. BRAF mutation by age-decade and body mass index in metastatic melanoma,” Journal of Clinical Oncology, vol. 29, abstract no. 8507, 2011.
  19. I. Melero, S. Hervas-Stubbs, M. Glennie, D. M. Pardoll, and L. Chen, “Immunostimulatory monoclonal antibodies for cancer therapy,” Nature Reviews Cancer, vol. 7, no. 2, pp. 95–106, 2007.
  20. C. Robert, L. Thomas, I. Bondarenko et al., “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2517–2526, 2011.
  21. J. D. Wolchok, L. Thomas, I. N. Bondarenko et al., “Phase III randomized study of ipilimumab (IPI) plus dacarbazine (DTIC) versus DTIC alone as first-line treatment in patients with unresectable stage III or IV melanoma,” Journal of Clinical Oncology, vol. 29, abstract no. LBA5, 2011.
  22. B. F. Cole, R. D. Gelber, J. M. Kirkwood, A. Goldhirsch, E. Barylak, and E. Borden, “Quality-of-life-adjusted survival analysis of interferon alfa-2b adjuvant treatment of high-risk resected cutaneous melanoma: an Eastern cooperative oncology group study,” Journal of Clinical Oncology, vol. 14, no. 10, pp. 2666–2673, 1996.
  23. A. M. Eggermont, S. Suciu, M. Santinami et al., “EORTC, 18991 phase III trial: long-term adjuvant pegylated interferon-α2b (PEG-IFN) versus observation in resected stage III melanoma: long-term results at 7. 6-years follow-up,” Journal of Clinical Oncology, vol. 29, no. 15, abstract no. 8506b, 2011.
  24. W. J. Hwu, K. S. Panageas, J. H. Menell et al., “Phase II study of temozolomide plus pegylated interferon-α-2b for metastatic melanoma,” Cancer, vol. 106, no. 11, pp. 2445–2451, 2006.
  25. L. E. Flaherty, J. Moon, M. B. Atkins et al., “Phase III trial of high-dose interferon α-2b versus cisplatin, vinblastine, DTIC plus IL-2 and interferon in patients with high-risk melanoma (SWOG S0008): an Intergroup study of CALGB, COC, ECOG and SWOG,” Journal of Clinical Oncology, vol. 30, abstract no. 8504, 2012.
  26. H. Davies, G. R. Bignell, C. Cox et al., “Mutations of the BRAF gene in human cancer,” Nature, vol. 417, no. 6892, pp. 949–954, 2002.
  27. J. A. Curtin, J. Fridlyand, T. Kageshita et al., “Distinct sets of genetic alterations in melanoma,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2135–2147, 2005.
  28. J. A. Jakob, R. L. Bassett, C. S. Ng et al., “Clinical characteristics and outcomes associated with BRAF and NRAS mutations in metastatic melanoma,” Cancer, vol. 118, no. 16, pp. 4014–4023, 2011.
  29. N. Dhomen and R. Marais, “BRAF signaling and targeted therapies in melanoma,” Hematology/Oncology Clinics of North America, vol. 23, no. 3, pp. 529–545, 2009.
  30. G. S. Inamdar, S. V. Madhunapantula, and G. P. Robertson, “Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail,” Biochemical Pharmacology, vol. 80, no. 5, pp. 624–637, 2010.
  31. S. M. Wilhelm, C. Carter, L. Tang et al., “BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis,” Cancer Research, vol. 64, no. 19, pp. 7099–7109, 2004.
  32. T. Eisen, T. Ahmad, K. T. Flaherty et al., “Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis,” British Journal of Cancer, vol. 95, no. 5, pp. 581–586, 2006.
  33. D. F. McDermott, J. A. Sosman, R. Gonzalez et al., “Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 study group,” Journal of Clinical Oncology, vol. 26, no. 13, pp. 2178–2185, 2008.
  34. A. Hauschild, S. S. Agarwala, U. Trefzer et al., “Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma,” Journal of Clinical Oncology, vol. 27, no. 17, pp. 2823–2830, 2009.
  35. R. Kefford, H. Arkenau, M. Brown, M. Millward et al., “Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors,” Journal of Clinical Oncology, vol. 28, abstract no. 8503, 2010.
  36. R. Dummer, J. Rinderknecht, S. M. Goldinger et al., “An open-label pilot study of vemurafenib in previously treated metastatic melanoma patients with brain metastases,” Journal of Clinical Oncology, vol. 29, abstract no. 8548, 2011.
  37. F. Su, A. Viros, C. Milagre et al., “RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors,” The New England Journal of Medicine, vol. 366, no. 3, pp. 207–215, 2012.
  38. E. Y. Chu, K. A. Wanat, C. J. Miller et al., “Diverse cutaneous side effects associated with BRAF inhibitor therapy: a clinicopathologic study,” Journal of the American Academy of Dermatology, vol. 67, no. 6, pp. 1265–1272, 2012.
  39. P. A. Oberholzer, D. Kee, P. Dziunycz et al., “RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors,” Journal of Clinical Oncology, vol. 30, no. 3, pp. 316–321, 2012.
  40. M. E. Lacouture, K. O'Reilly, N. Rosen, and D. B. Solit, “Induction of cutaneous squamous cell carcinomas by RAF inhibitors: cause for concern?” Journal of Clinical Oncology, vol. 30, no. 3, pp. 329–330, 2012.
  41. N. Wagle, C. Emery, M. F. Berger et al., “Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling,” Journal of Clinical Oncology, vol. 29, no. 22, pp. 3085–3096, 2011.
More
Information
Subjects: Oncology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 352
Revisions: 2 times (View History)
Update Date: 18 Dec 2020
1000/1000
Video Production Service