1000/1000
Hot
Most Recent
In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories [math]\displaystyle{ ID_\nu }[/math] are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.
The formal theory IDω (and IDν in general) is an extension of Peano Arithmetic, formulated in the language LID, by the following axioms:
The theory IDν with ν ≠ ω is defined as:
A set [math]\displaystyle{ I \subseteq \N }[/math] is called inductively defined if for some monotonic operator [math]\displaystyle{ \Gamma: P(N) \rightarrow P(N) }[/math], [math]\displaystyle{ LFP(\Gamma) = I }[/math], where [math]\displaystyle{ LFP(f) }[/math] denotes the least fixed point of [math]\displaystyle{ f }[/math]. The language of ID1, [math]\displaystyle{ L_{ID_1} }[/math], is obtained from that of first-order number theory, [math]\displaystyle{ L_\N }[/math], by the addition of a set (or predicate) constant IA for every X-positive formula A(X, x) in LN[X] that only contains X (a new set variable) and x (a number variable) as free variables. The term X-positive means that X only occurs positively in A (X is never on the left of an implication). We allow ourselves a bit of set-theoretic notation:
Then ID1 contains the axioms of first-order number theory (PA) with the induction scheme extended to the new language as well as these axioms:
Where [math]\displaystyle{ F(x) }[/math] ranges over all [math]\displaystyle{ L_{ID_1} }[/math] formulas.
Note that [math]\displaystyle{ (ID_1)^1 }[/math] expresses that [math]\displaystyle{ I_A }[/math] is closed under the arithmetically definable set operator [math]\displaystyle{ \Gamma_A(S) = \{x \in \N | \N \models A(S, x)\} }[/math], while [math]\displaystyle{ (ID_1)^2 }[/math] expresses that [math]\displaystyle{ I_A }[/math] is the least such (at least among sets definable in [math]\displaystyle{ L_{ID_1} }[/math]).
Thus, [math]\displaystyle{ I_A }[/math] is meant to be the least pre-fixed-point, and hence the least fixed point of the operator [math]\displaystyle{ \Gamma_A }[/math].
To define the system of ν-times iterated inductive definitions, where ν is an ordinal, let [math]\displaystyle{ \prec }[/math] be a primitive recursive well-ordering of order type ν. We use Greek letters to denote elements of the field of [math]\displaystyle{ \prec }[/math]. The language of IDν, [math]\displaystyle{ L_{ID_\nu} }[/math] is obtained from [math]\displaystyle{ L_\N }[/math] by the addition of a binary predicate constant JA for every X-positive [math]\displaystyle{ L_\N[X, Y] }[/math] formula [math]\displaystyle{ A(X, Y, \mu, x) }[/math] that contains at most the shown free variables, where X is again a unary (set) variable, and Y is a fresh binary predicate variable. We write [math]\displaystyle{ x \in J^\mu_A }[/math] instead of [math]\displaystyle{ J_A(\mu, x) }[/math], thinking of x as a distinguished variable in the latter formula.
The system IDν is now obtained from the system of first-order number theory (PA) by expanding the induction scheme to the new language and adding the scheme [math]\displaystyle{ (TI_\nu): TI(\prec, F) }[/math] expressing transfinite induction along [math]\displaystyle{ \prec }[/math] for an arbitrary [math]\displaystyle{ L_{ID_\nu} }[/math] formula [math]\displaystyle{ F }[/math] as well as the axioms:
where [math]\displaystyle{ F(x) }[/math] is an arbitrary [math]\displaystyle{ L_{ID_\nu} }[/math] formula. In [math]\displaystyle{ (ID_\nu)^1 }[/math] and [math]\displaystyle{ (ID_\nu)^2 }[/math] we used the abbreviation [math]\displaystyle{ A^\mu(F) }[/math] for the formula [math]\displaystyle{ A(F, (\lambda\gamma y; \gamma \prec \mu \and y \in J^\gamma_A), \mu, x) }[/math], where [math]\displaystyle{ x }[/math] is the distinguished variable. We see that these express that each [math]\displaystyle{ J^\mu_A }[/math], for [math]\displaystyle{ \mu \prec \nu }[/math], is the least fixed point (among definable sets) for the operator [math]\displaystyle{ \Gamma^\mu_A(S) = \{n \in \N | (\N, (J^\gamma_A)_{\gamma \prec \mu}\} }[/math]. Note how all the previous sets [math]\displaystyle{ J^\gamma_A }[/math], for [math]\displaystyle{ \gamma \prec \mu }[/math], are used as parameters.
We then define [math]\displaystyle{ ID_{\prec \nu} = \bigcup \limits_{\xi \prec \nu}ID_\xi }[/math].
[math]\displaystyle{ \widehat{\mathsf{ID}}_\nu }[/math] - [math]\displaystyle{ \widehat{\mathsf{ID}}_\nu }[/math] is a weakened version of [math]\displaystyle{ \mathsf{ID}_\nu }[/math]. In the system of [math]\displaystyle{ \widehat{\mathsf{ID}}_\nu }[/math], a set [math]\displaystyle{ I \subseteq \N }[/math] is instead called inductively defined if for some monotonic operator [math]\displaystyle{ \Gamma: P(N) \rightarrow P(N) }[/math], [math]\displaystyle{ I }[/math] is a fixed point of [math]\displaystyle{ \Gamma }[/math], rather than the least fixed point. This subtle difference makes the system significantly weaker: [math]\displaystyle{ PTO(\widehat{\mathsf{ID}}_1) = \psi(\Omega^{\varepsilon_0}) }[/math], while [math]\displaystyle{ PTO(\mathsf{ID}_1) = \psi(\varepsilon_{\Omega+1}) }[/math].
[math]\displaystyle{ \mathsf{ID}_\nu\# }[/math] is [math]\displaystyle{ \widehat{\mathsf{ID}}_\nu }[/math] weakened even further. In [math]\displaystyle{ \mathsf{ID}_\nu\# }[/math], not only does it use fixed points rather than least fixed points, and has induction only for positive formulas. This once again subtle difference makes the system even weaker: [math]\displaystyle{ PTO(\mathsf{ID}_1\#) = \psi(\Omega^\omega) }[/math], while [math]\displaystyle{ PTO(\widehat{\mathsf{ID}}_1) = \psi(\Omega^{\varepsilon_0}) }[/math].
[math]\displaystyle{ \mathsf{W-ID}_\nu }[/math] is the weakest of all variants of [math]\displaystyle{ \mathsf{ID}_\nu }[/math], based on W-types. The amount of weakening compared to regular iterated inductive definitions is identical to removing bar induction given a certain subsystem of second-order arithmetic. [math]\displaystyle{ PTO(\mathsf{W-ID}_1) = \psi_0(\Omega\times\omega) }[/math], while [math]\displaystyle{ PTO(\mathsf{ID}_1) = \psi(\varepsilon_{\Omega+1}) }[/math].
[math]\displaystyle{ \mathsf{U(ID}_\nu\mathsf{)} }[/math] is an "unfolding" strengthening of [math]\displaystyle{ \mathsf{ID}_\nu }[/math]. It is not exactly a first-order arithmetic system, but captures what one can get by predicative reasoning based on ν-times iterated generalized inductive definitions. The amount of increase in strength is identical to the increase from [math]\displaystyle{ \varepsilon_0 }[/math] to [math]\displaystyle{ \Gamma_0 }[/math]: [math]\displaystyle{ PTO(\mathsf{ID}_1) = \psi(\varepsilon_{\Omega+1}) }[/math], while [math]\displaystyle{ PTO(\mathsf{U(ID}_1\mathsf{)}) = \psi(\Gamma_{\Omega+1}) }[/math].