Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1927 2022-09-20 10:49:00 |
2 format correct + 20 word(s) 1947 2022-09-21 03:51:35 | |
3 format correct Meta information modification 1947 2022-09-22 08:07:48 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Fierascu, R.C.;  Fierascu, I.;  Ortan, A.;  Paunescu, A. Plantago media L.. Encyclopedia. Available online: https://encyclopedia.pub/entry/27350 (accessed on 19 May 2024).
Fierascu RC,  Fierascu I,  Ortan A,  Paunescu A. Plantago media L.. Encyclopedia. Available at: https://encyclopedia.pub/entry/27350. Accessed May 19, 2024.
Fierascu, Radu Claudiu, Irina Fierascu, Alina Ortan, Alina Paunescu. "Plantago media L." Encyclopedia, https://encyclopedia.pub/entry/27350 (accessed May 19, 2024).
Fierascu, R.C.,  Fierascu, I.,  Ortan, A., & Paunescu, A. (2022, September 20). Plantago media L.. In Encyclopedia. https://encyclopedia.pub/entry/27350
Fierascu, Radu Claudiu, et al. "Plantago media L.." Encyclopedia. Web. 20 September, 2022.
Plantago media L.
Edit

Belonging to the Plantaginaceae family, the hoary plantain (Plantago media L.) represents one of the lesser studied species from the Plantago genus. The potential applications of Plantago media (P. media) will be detailed in regard to other potential applications of Plantago species, in respect to recent literature data published.

Plantago media L. composition biomedical applications potential uses

1. Introduction

Accompanying the development of human civilization, plants were commonly used as food, feed or for empirical medicinal purposes [1]. The development of the modern medicine led to the loss of important ethnomedicinal data, accompanied by the disappearance or the reduction of the growing area of medicinally important plants [2]. However, the last decades led to the resurrection of alternative, plant-based medicine [3], together with a search of alternative, “bio” products [4], as well as the discovery of new potential applications of the vegetal materials [5]. Several plant-originating biomolecules have even pursued the long road from “plant to pharmacy shelf”, resulting in economically important commercial products [6]. With the identification of commercially valuable phytochemicals, the vegetal resources could become the subject of over-harvesting, producing environmental or ecological imbalances [6]. This could be avoided by continuously searching for alternative vegetal resources, and by the re-discovery of underutilized plants.

The Plantaginaceae family contains herbs or small shrubs, their habitat ranging from terrestrial to aquatic. The family contains only one genus and approximatively 270 species [7]. Plantago genus is characterized by a wide variety of component phytochemicals, but the most encountered are the iridoid glucosides, flavonoids, hydroxycinnamic acids, terpenoids, polysaccharides, unsaturated fatty acids, vitamins, alkaloids, terpenes and saponins (leaves), respectively xylose and galacturonic acid (mucilaginous seeds) [8][9]. The genus is world-wide represented, several species having a weedy character [7].

Belonging to the Plantaginaceae family, the hoary plantain (Plantago media L.) represents one of the lesser studied species from the Plantago genus. Native to Eurasia and introduced in most parts of the world [10], the plant is a perennial herb, characteristically growing on chalk or limestone soils, but often also encountered on heavy clay soils. Its habitat is mainly related to the presence of a calcium source, being encountered mainly on downland grassland, calcareous pasture or even in water-meadows beneficiary of calcareous water [11]. The species is morphologically characterized by the slender stalk (5 to 50 cm), basal, finely-haired elliptic to ovate leaves, developing in rosette pattern, over 3 cm wide, presenting 7–9 veins and equipped with midribs that can be easily separated from the mesophyll tissue, curly, abundant, or sparsely scattered lamina trichomes on both epidermis, a petiole shorter than the leaf lamina, delicate pink-white flowers (appearing May–September) that are pollinated by wind and insects, and contains 4 seeds per capsule [12][13][14][15][16][17][18][19]. A tetraploid species, P. media shows treading resistance, a feature related to the resistance being represented by the strong root contraction [10]. The hoary plantain is edible (fresh young leaves being used in fresh salads or cooked as other leafy green vegetables) [20] and its uses were apparently common in the past, its seeds being encountered in the archaeological excavations from Roman period Britain [21][22] and even earlier [23]. Its use in folk medicine included several applications, such as antimicrobial, anti-inflammatory, anti-histaminic, hemostatic, cicatrizing, expectorant and diuretic [20][24]. The commonly used part for medical purposes is the leaves, used for the preparation of infusions [22].

2. Plantago media L. Potential Application

The potential applications of P. media will be detailed in regard to other potential applications of Plantago species, in respect to recent literature data published.

2.1. Health Applications

P. squarrosa and P. major L. exhibited anti-microbial potential [25][26] against several gram-positive and gram-negative bacteria or fungi, a good support of the mycostatic potential observed for P. media [27]. Another very important potential activity is represented by the antiviral potential. Chathuranga et al. [28] evaluated the antiviral potential of P. asiatica and its component verbascoside (acteoside), a compound that, as previously presented, can be found in relatively high quantities in P. media [27], against the respiratory syncytial virus, the in vivo assays suggesting a possible anti-viral path to be followed.
The anti-inflammatory potential of P. media [29] was supported by the application of P. major and P. lanceolata extracts as anti-inflammatory agents (either in vitro, in carrageenan-induced paw edema model, by determining the expression of the proinflammatory enzyme, cyclooxygenase, or on oral epithelial cells), an effect attributed to the presence of phenylethanoid compounds (in particular, verbascoside) [30][31][32][33].
An anti-tumoral potential was observed for P. major and P. lanceolata extracts [34][35][36], as well as for the polysaccharide fraction of P. ovata [37]. All the previously presented activities for different Plantago sp. represent a good indicator, supporting the reported applications of P. media.
Other studies, in turn, would suggest potential applications of the hoary plantain that are waiting to be explored. For example, a hepatoprotective action was observed for the defatted aqueous methanolic extract obtained from the leaves of P. major (effect attributed to verbascoside) [30], P. ovata husk mucilage [38] and seed aqueous extract [39], P. asiatica seeds polysaccharide fraction [40], P. psyllium seeds ethanolic extract (for which the total phenolics and total flavonoids contents were determined as 16.17 mg gallic acid equivalents/g dried weight, respectively 1.9 mg rutin equivalents/g dried weight) [41] and P. albicans leaves aqueous extract (total phenolics content 592.75 mg gallic acid equivalents/g, total flavonoids content 116.7 mg catechin equivalents/g [42], in several hepatic damage models, Table 3). Considering the variety of extracts and fractions used, the results would suggest a hepatoprotective potential for the P. media, also.
The renoprotective effect of the P. major Soxhlet extracts (ethanol, 70%) was evaluated in Cisplatin and Adriamycin induced renal dysfunction in animal models [43][44][45], while the P. albicans leaves extract and P. asiatica and P. depressa (a species to which, according to recent phylogenetic analyses, P. media is closely related [19]) seeds extracts proved to have an anti-obesity potential, by effectively improving lipid and glucose metabolism in high-fat diet-induced obese mice [46][47][48].
The flavonoid fraction isolated and the leaves extract obtained from P. major (a species that, as previously stated [49], presents a lower total flavonoids content, compared with P. media), were evaluated as antiarrhythmic agents (by functional modulation of Na+ and Ca2+-channels in cardiomyocytes) [50], respectively as anxiolytic agents [51]. Arabinoxylan (a polysaccharide isolated from different Plantago sp.) proved to have anti-diabetic (by improvement of carbohydrate, lipid and amino acid metabolism) [52] and prebiotic (by enhancing the growth and antimicrobial activity of Lactobacillus casei) properties [53].
The Plantago asiatica L. extract and polysaccharide fraction were proved to have antihypertensive effect (trough angiotensin-converting-enzyme 46 inhibition, while simultaneously protecting organ damage against hypertension) [54], respectively to alleviates nonylphenol induced reproductive system injury (via PI3K/Akt/mTOR pathway) [55].
The whole plant extract of Plantago rugelii Decne was evaluated by Ogbiko et al. [56] in an anti-ulcer study, the results suggesting that the infusion (200 and 400 mg/kg) had a protective effect against gastric ulceration (induced by aspirin and HCl). Similar results were obtained by Bagheri et al. [39], using the aqueous P. ovata seeds extract, in an indomethacin-induced rat model, observing a reduction in microscopic and macroscopic ulcer index. Seed mucilage of P. ovata was used by Basiri et al. [57] as a potent lead biosorbent (increasing fecal excretion and decreasing lead tissue absorption) in mice models.
All these potential applications of Plantago sp. remains to be studied for P. media, as no studies in those area were performed to this date, up to the knowledge.

2.2. Other Applications

Besides the health-related applications, Plantago sp. were evaluated for a series of industrial applications. The methanol extract of P. lanceolata could find application in fish farming, as its application was proven to promote growth, as well as to enhance immune responses and antioxidant enzyme activities in rainbow trout [58], while verbascoside and aucubin was proved to reduce NH3 production on rumen fermentation, reducing the N losses in the urine [59].

P. lanceolata extracts were proposed for the development of natural cosmetics (due to their UV protecting activity, as well as skin regeneration stimulation) [60], while the gum isolated from P. major seeds proved to have emulsifying and foaming properties, which supports the use of the fraction as an alternative hydrocolloid for emulsion and foam-based foods [61]. Related to the food industry, P. major mucilage (extracted either by hot-water extraction or ultrasound assisted extraction) was used for the development edible and biodegradable films [62][63]. This could lead to the development of bioproducts for increasing the shelf-life of meat products. For example, the application of the edible film (with a 1.5% dill essential oil content) increased the shelf life of beef by 9 days [62].

The mucilage separated from Plantago sp. could also find application in other important areas, such as scaffolds for cell culture, drug delivery systems or food additives. This would involve the development of biocompatible materials, such as those proposed by Allafchian et al. [64], based on P. ovata mucilage and polyvinyl alcohol.

Correlated with their metal-uptake capacity, Plantago sp. could be used for phytoremediation potential. This application was studied, for example, for P. lanceolata and P. major for the removal of toxic heavy metals (Pb, As, Cd) [65][66]. The studies revealed a higher concentration of heavy metals in the roots, compared with the leaves, thus suggesting a limited mobility of the heavy metals, as a part of the resistance mechanism to heavy metals (involving an avoidance strategy, such as the immobilization of the metal at root level and in cell walls) [66]. The same plant was proved efficient in the phytoremediation of organic pollutants contaminated sites [67].

Another potential application of P. media, correlated with their metal up-take capacity could be in the improvement of mineral concentrations in the diet of livestock, to prevent the apparition of mineral deficiency, trough increasing species diversity in swards [68]. However, the hoary plantain affinity towards different metals could represent a drawback, as some studies [69] suggest a potential for P. media to up-take hazardous heavy metals. Although this aspect could be beneficial for phytoremediation strategies, it needs to be considered for other application, the control of heavy metals content in extracts should be performed before their application. The use of P. lanceolata in cattle diet was proven to reduce N2O emissions [70] and to increase the growth performance and carcass characteristics of lambs [71], areas in which P. media could find applications.

Another environmental application of Plantago sp. is represented by its mucilage ability to remove organic pollutants. The biocomposite membrane (P. psyllium mucilage, eggshell membrane and alginate) proposed by Mirzaei and Javanbakht [72] proved to have the ability to remove cationic and anionic dyes (methylene blue and methyl orange) from aqueous solutions, reaching an adsorption capacity of 5.45 and, respectively, 3.25 mg/g. Another potential application of the Plantago sp. is represented by their chemical inhibitor potential. For example, the polysaccharide fraction of P. ovata was proposed as a green corrosion inhibitor by Mobin and Rizvi [73], their study suggesting a protective effect of the developed material for the carbon steel in hydrochloric medium, presenting a good inhibition efficiency (92.53%) accompanied by a low risk of environmental pollution. The authors assign the main corrosion inhibitor role to the highly branched polysaccharide arabinosyl (galaturonic acid) rhamnosylxylan [73].

Finally, a new and promising application of Plantago sp. is related to the nanotechnology area, in particular for the nanoparticles phytosynthesis (synthesis of materials using plant extracts). Briefly, the phytosynthesis mechanisms involve the reduction of metals from metallic salts precursors to zero-valent nanoparticles or metallic oxides, using the different plant phytoconstituents [74]. The mechanism, presented in multiple studies [75] uses the phytocomponents both as reduction and capping agents. This alternative method of nanoparticles synthesis leads to materials with enhanced properties, valuable for a series of medical and industrial applications [74][76], enhancing the intrinsic properties of the nanoparticles [77], as well as a potential reduction of their toxicity [75]. The application was explored for P. major aqueous leaves extracts, leading to the synthesis of silver nanoparticles (AgNPs) and iron oxide nanoparticles (IONPs—spherical, 4.6–30.6 nm) and the exploration of their environmental applications, for the enhanced phytoremediation of soil and water contaminated with the insecticide fipronil [78] and for the removal of methyl orange dye, respectively [79].

References

  1. Cheminal, A.; Kokkoris, I.P.; Strid, A.; Dimopoulos, P. Medicinal and aromatic Lamiaceae plants in Greece: Linking diversity and distribution patterns with ecosystem services. Forests 2020, 11, 661.
  2. Singh, B.; Singh, B.; Kishor, A.; Singh, S.; Bhat, M.N.; Surmal, O.; Musarella, C.M. Exploring plant-based ethnomedicine and quantitative ethnopharmacology: Medicinal plants utilized by the population of Jasrota Hill in Western Himalaya. Sustainability 2020, 12, 7526.
  3. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614.
  4. Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209.
  5. Schillberg, S.; Raven, N.; Spiegel, H.; Rasche, S.; Buntru, M. Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front. Plant Sci. 2019, 10, 720.
  6. Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules 2020, 25, 309.
  7. Schwarzbach, A.E. Plantaginaceae. In Flowering Plants Dicotyledons. The Families and Genera of Vascular Plants; Kadereit, J.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 7, pp. 327–329.
  8. Taskova, R.; Evstatieva, L.; Handjieva, N.; Popov, S. Iridoid patterns of Genus Plantago L. and their systematic significance. Z Naturforsch. C 2002, 57, 42–50.
  9. Hegnauer, R. Chemotaxonomie der Pflanzen; Birkhäuser: Basel, Switzerland, 1969; Volume 5, pp. 330–337.
  10. Van der Aart, P.J.M.; Vulto, J.C.; Soekarjo, R.; van Damme, J.M.M. General Biology of Plantago. In Plantago: A Multidisciplinary Study. Ecological Studies (Analysis and Synthesis); Kuiper, P.J.C., Bos, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 89, pp. 4–19.
  11. Grose, D. The Flora of Wiltshire; Wiltshire Archaeological and Natural History Society: Devizes, UK, 1957.
  12. Bley, L.F. Einige Versuche über die Bestandtheile der Blüthen des Wegerichs (Plantago media). Archiv. Pharm. 1846, 96, 169–173.
  13. Schier, W. Morphological and anatomical differentiation between Plantago lanceolata, P. major and P. media. Dtsch. Apoth. Ztg. 1990, 130, 1457–1458.
  14. Ianovici, N.; Ţărău, G.; Liviatodosi, A.; Iriza, E.; Danciu, A.; Ţolea, L.; Tudosie, D.; Munteanu, F.; Bogdan, D.; Ciobănică, V. Contributions to the characterization of Plantago species from Romania. Ann. West Univ. Timişoara Biol. 2010, 13, 37–76.
  15. Lukova, P.; Dimitrova-Dyulgerova, I.; Karcheva-Bahchevanska, D.; Mladenov, R.; Iliev, I.; Nikolova, M. Comparative morphological and qualitative phytochemical analysis of Plantago media L. leaves with P. major L. and P. lanceolata L. leaves. Int. J. Med. Res. Pharm. Sci. 2017, 4, 20–26.
  16. Cavers, P.B.; Bassett, L.J.; Crompton, C.W. The biology of Canadian weeds.: 47. Plantago lanceolata L. Can. J. Plant Sci. 1980, 60, 1269–1282.
  17. Farcaș, A.D.; Moț, A.C.; Pârvu, A.E.; Toma, V.A.; Popa, M.A.; Mihai, M.C.; Sevastre, B.; Roman, I.; Vlase, L.; Pârvu, M. In Vivo pharmacological and anti-inflammatory evaluation of xerophyte Plantago sempervirens Crantz. Oxid. Med. Cell Longev. 2019, 2019, 5049643.
  18. Miszalski, Z.; Skoczowski, A.; Silina, E.; Dymova, O.; Golovko, T.; Kornas, A.; Strzalka, K. Photosynthetic activity of vascular bundles in Plantago media leaves. J. Plant Physiol. 2016, 204, 36–43.
  19. Abrahamczyk, S.; Dannenberg, L.S.; Weigend, M. Pollination modes and divergent flower traits in three species of Plantago subgenus Plantago (Plantaginaceae). Flora 2020, 267, 151601.
  20. Min, J.; Tao, T. Characterization of the complete chloroplast genome of Plantago media, a Chinese herb from China. Mitochondrial DNA B 2020, 5, 1861–1862.
  21. Blamey, M.; Fitter, R.; Fitter, A. Wild Flowers of Britain and Ireland: The Complete Guide to the British and Irish Flora; A & C Black: London, UK, 2003.
  22. Parnell, J.; Curtis, T. Webb’s an Irish Flora; Cork University Press: Cork, Ireland, 2012.
  23. Mohsenzadeh, S.; Sheidai, M.; Ghahremaninejad, F.; Koohdar, F. A palynological study of the genus Plantago (Plantaginaceae). Grana 2020, 2020, 1–12.
  24. Bojor, O. Guide of Medicinal and Aromatic Plants from A to Z. Ghidul Plantelor Medicinale şi Aromatice de la A la Z; Fiat Lux: Bucharest, Romania, 2003; pp. 94–95. (In Romanian)
  25. Omer, E.; Elshamy, A.I.; Nassar, M.; Shalom, J.; White, A.; Cock, I.E. Plantago squarrosa Murray extracts inhibit the growth of some bacterial triggers of autoimmune diseases: GC–MS analysis of an inhibitory extract. Inflammopharmacology 2019, 27, 373–385.
  26. Urziya, A.; Gulbaram, U.; Kaldanay, K.; Yulia, Y.; Oksana, S.; Leonid, S. Study of antimicrobial activity of Plantago major and Acorus calamus carbon dioxide extracts. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2081–2085.
  27. Volodymirivna, K.T.; Pavlyvna, S.H.; Kostyantynivna, Y.O.; Vladylenovych, M.O.; Oleksandrivna, M.O. Mycostatic activity of extracts from leaves of Plantago media L. and Plantago altissima L. Ann. Trop Med. Public Health 2020, 3, 299–303.
  28. Chathuranga, K.; Kim, M.S.; Lee, H.C.; Kim, T.H.; Kim, J.H.; Gayan Chathuranga, W.A.; Ekanayaka, P.; Wijerathne, H.M.S.M.; Cho, W.K.; Kim, H.I.; et al. Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts In Vitro and In Vivo. Viruses 2019, 11, 604.
  29. Majkić, T.; Bekvalac, K.; Beara, I. Plantain (Plantago L.) species as modulators of prostaglandin E2 and thromboxane A2 production in inflammation. J. Ethnopharmacol. 2020, 262, 113140.
  30. Eldesoky, A.H.; Abdel-Rahman, R.F.; Ahmed, O.K.; Soliman, G.A.; Saeedan, A.S.; Elzorba, H.Y.; Elansary, A.A.; Hattori, M. Antioxidant and hepatoprotective potential of Plantago major growing in Egypt and its major phenylethanoid glycoside, acteoside. J. Food Biochem. 2018, 42, e12567.
  31. Fakhrudin, N.; Astuti, E.D.; Sulistyawati, R.; Santosa, D.; Susandarini, R.; Nurrochmad, A.; Wahyuono, S. n-hexane insoluble fraction of Plantago lanceolata exerts anti-inflammatory activity in mice by inhibiting cyclooxygenase-2 and reducing chemokines levels. Sci. Pharm. 2017, 85, 12.
  32. Vandana, J.; Gupta, A.K.; Mukerjee, A. Phytochemical screening and evaluation of anti-inflammatory activity of aerial part extracts of Plantago major L. Asian J. Pharm. Clin. Res. 2017, 10, 307–311.
  33. Zubair, M.; Widén, C.; Renvert, S.; Rumpunen, K. Water and ethanol extracts of Plantago major leaves show anti-inflammatory activity on oral epithelial cells. J. Tradit. Complement. Med. 2019, 9, 169–171.
  34. Alsaraf, K.M.; Mohammad, M.H.; Al-Shammari, A.M.; Abbas, I.S. Selective cytotoxic effect of Plantago lanceolata L. against breast cancer cells. J. Egypt Nat. Cancer Inst. 2019, 31, 10.
  35. Kartini Piyaviriyakul, S.; Thongpraditchote, S.; Siripong, P.; Vallisuta, O. Effects of Plantago major extracts and its chemical compounds on proliferation of cancer cells and cytokines production of lipopolysaccharide-activated THP-1 macrophages. Pharmacog. Mag. 2017, 13, 393–399.
  36. Ždralović, A.; Mesic, A.; Eminović, I.; Parić, A. Cytotoxic and genotoxic activity of Plantago major L. extracts. Caryologia 2019, 72, 35–40.
  37. Patel, M.K.; Tanna, B.; Gupta, H.; Mishra, A.; Jha, B. Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. Int. J. Biol. Macromol. 2019, 133, 190–201.
  38. Wahid, A.; Mahmoud, S.M.N.; Attia, E.Z.; Yousef, A.E.S.A.; Okasha, A.M.M.; Soliman, H.A. Dietary fiber of psyllium husk (Plantago ovata) as a potential antioxidant and hepatoprotective agent against CCl4-induced hepatic damage in rats. S. Afr. J. Bot. 2020, 130, 208–214.
  39. Bagheri, S.M.; Zare-Mohazabieh, F.; Momeni-Asl, H.; Yadegari, M.; Mirjalili, A.; Anvari, M. Antiulcer and hepatoprotective effects of aqueous extract of Plantago ovata seed on indomethacin-ulcerated rats. Biomed. J. 2018, 41, 41–45.
  40. Li, F.; Huang, D.; Nie, S.; Xie, M. Polysaccharide from the seeds of Plantago asiatica L. protect against lipopolysaccharide-induced liver injury. J. Med. Food 2019, 22, 1058–1066.
  41. Abouzied, M.M.; Mahmoud, S.M.; Wahid, A.; Ahmed, A.E.; Okasha, A.M.; Soliman, H.A.; Thagfan, S.S.A.; Attia, E.Z. A study of the hepatoprotective effect of Plantago psyllium L. seed extract against Carbon tetrachloride induced hepatic injury in rats. J. Appl. Biomed. 2020, 18, 80–86.
  42. Barkaoui, T.; Hamimed, S.; Bellamine, H.; Bankaji, I.; Sleimi, N.; Landoulsi, A. Alleviated actions of Plantago albicans extract on lead acetate-produced hepatic damage in rats through antioxidant and free radical scavenging capacities. J. Med. Food 2020, 23, 1201–1215.
  43. Parhizgar, S.; Hosseinian, S.; Hadjzadeh, M.A.R.; Soukhtanloo, M.; Ebrahimzadeh, A.; Mohebbati, R.; Yazd, Z.N.E.; Khajavi Rad, A. Renoprotective effect of Plantago major against nephrotoxicity and oxidative stress induced by cisplatin. Iran J. Kidney Dis. 2016, 10, 182–188.
  44. Parhizgar, S.; Hosseinian, S.; Soukhtanloo, M.; Bideskan, A.E.; Hadjzadeh, M.A.R.; Shahraki, S.; Noshahr, Z.S.; Heravi, N.E.; Haghshenas, M.; Rad, A.K. Plantago major protects against cisplatin-induced renal dysfunction and tissue damage in rats. Saudi J. Kidney Dis. Transpl. 2018, 29, 1057–1064.
  45. Yazd, Z.N.E.; Noshahr, Z.S.; Hosseinian, S.; Shafei, M.N.; Bideskan, A.E.; Mohebbati, R.; Heravi, N.E.; Shahraki, S.; Mahzari, S.; Rad, A.K. Renoprotective effect of Plantago major against proteinuria and apoptosis induced by adriamycin in rat. J. Pharmacopunct. 2019, 22, 35–40.
  46. Samout, N.; Ettaya, A.; Bouzenna, H.; Ncib, S.; Elfeki, A.; Hfaiedh, N. Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats. Biomed. Pharmacother. 2016, 84, 1768–1775.
  47. Yang, Q.; Qi, M.; Tong, R.; Wang, D.; Ding, L.; Li, Z.; Huang, C.; Wang, Z.; Yang, L. Plantago asiatica L. seed extract improves lipid accumulation and hyperglycemia in high-fat diet-induced obese mice. Int. J. Molec. Sci. 2017, 18, 1393.
  48. Ji-Ping, L.; Ren-Chao, T.; Xiao-Meng, S.; Hao-Yue, Z.; Shuai, S.; Ai-Zhen, X.; Zheng-Tao, W.; Li, Y. Comparison of main chemical composition of Plantago asiatica L. and P. depressa Willd. seed extracts and their anti-obesity effects in high-fat diet-induced obese mice. Phytomedicine 2021, 81, 153362.
  49. Beara, I.N.; Lesjak, M.M.; Jovin, E.D.; Balog, K.J.; Anačkov, G.T.; Orčić, D.Z.; Mimica-Dukić, N.M. Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. J. Agricult. Food Chem. 2009, 57, 9268–9273.
  50. Khushmatov, S.S.; Makhmudov, R.R. Antiarrhythmic activity of the flavonoid fraction of Plantago major L. extract. Pharm. Chem. J. 2019, 52, 992–995.
  51. Mojtahedin, A. Study of anxiolytic effect of hydro-alcoholic leaf extract of Plantago major L. in rats and interaction with epinephrine: Role of Adrenergic system. Der Pharm. Lett. 2016, 8, 202–206.
  52. Nie, Q.; Chen, H.; Hu, J.; Gao, H.; Fan, L.; Long, Z.; Nie, S. Arabinoxylan attenuates type 2 diabetes by improvement of carbohydrate, lipid, and amino acid metabolism. Molec. Nutr. Food Res. 2018, 62, 1800222.
  53. Pandey, A.; Koruri, S.S.; Chowdhury, R.; Bhattacharya, P. Prebiotic influence of Plantago ovata on free and microencapsulated L. casei—Growth kinetics, antimicrobial activity and microcapsules stability. Int. J. Pharm. Pharm. Sci. 2016, 8, 89–97.
  54. Tong, R.C.; Qi, M.; Yang, Q.M.; Li, P.F.; Wang, D.D.; Lan, J.P.; Wang, Z.T.; Yang, L. Extract of Plantago asiatica L. seeds ameliorates hypertension in spontaneously hypertensive rats by inhibition of angiotensin converting enzyme. Front. Pharmacol. 2019, 10, 403.
  55. Li, F.; Huang, D.; Yang, W.; Liu, X.; Nie, S.; Xie, M. Polysaccharide from the seeds of Plantago asiatica L. alleviates nonylphenol induced reproductive system injury of male rats via PI3K/Akt/mTOR pathway. J. Funct. Foods 2020, 66, 103828.
  56. Ogbiko, C.; Eboka, J.C.; Igbe, I.; Usman, D.M. Anti-ulcer activity of methanol extract of Plantago rugelii Decne. (Plantaginaceae). Trop. J. Nat. Prod. Res. 2017, 1, 84–88.
  57. Basiri, S.; Shekarforoush, S.S.; Mazkour, S.; Modabber, P.; Kordshouli, F.Z. Evaluating the potential of mucilaginous seed of psyllium (Plantago ovata) as a new lead biosorbent. Bioact. Carbohydr. Diet Fibre 2020, 24, 100242.
  58. Elbesthi, R.T.A.; Özdemir, K.Y.; Taştan, Y.; Bilen, S.; Sönmez, A.Y. Effects of ribwort plantain (Plantago lanceolata) extract on blood parameters, immune response, antioxidant enzyme activities, and growth performance in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2020, 46, 1295–1307.
  59. Navarrete, S.; Kemp, P.D.; Pain, S.J.; Back, P.J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on In Vitro rumen fermentation. Anim. Feed Sci. Technol. 2016, 222, 158–167.
  60. Nizioł-Łukaszewska, Z.; Gaweł-Bęben, K.; Rybczyńska-Tkaczyk, K.; Jakubczyk, A.; Karaś, M.; Bujak, T. Biochemical properties, UV-protecting and fibroblast growth-stimulating activity of Plantago lanceolata L. extracts. Ind. Crops Prod. 2019, 138, 111453.
  61. Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Rezagholi, F. The hydrocolloid extracted from Plantago major seed: Effects on emulsifying and foaming properties. J. Disp. Sci. Technol. 2020, 41, 667–673.
  62. Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017, 94, 515–526.
  63. Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Hamishehkar, H. Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polym. Test. 2019, 77, 105868.
  64. Allafchian, A.R.; Kalani, S.; Golkar, P.; Mohammadi, H.; Jalali, S.A.H. A comprehensive study on Plantago ovata/PVA biocompatible nanofibers: Fabrication, characterization, and biological assessment. J. Appl. Polym. Sci. 2020, 137, 49560.
  65. Salas-Luévano, M.A.; Mauricio-Castillo, J.A.; González-Rivera, M.L.; Vega-Carrillo, H.R.; Salas-Muñoz, S. Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environ. Earth Sci. 2017, 76, 806.
  66. Romeh, A.A.; Khamis, M.A.; Metwally, S.M. Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water. Water Air Soil Pollut. 2016, 227, 9.
  67. Aioub, A.A.A.; Zuo, Y.; Li, Y.; Qie, X.; Zhang, X.; Essmat, N.; Wu, W.; Hu, Z. Transcriptome analysis of Plantago major as a phytoremediator to identify some genes related to cypermethrin detoxification. Environ. Sci. Pollut. Res. 2020.
  68. Darch, T.; McGrath, S.P.; Lee, M.R.F.; Beaumont, D.A.; Blackwell, M.S.A.; Horrocks, C.A.; Evans, J.; Storkey, J. The mineral composition of wild-type and cultivated varieties of pasture species. Agronomy 2020, 10, 1463.
  69. Vaculík, M.; Jurkovič, Ľ.; Matejkovič, P.; Molnárová, M.; Lux, A. Potential risk of Arsenic and Antimony accumulation by medicinal plants naturally growing on old mining sites. Water Air Soil Pollut. 2013, 224, 1546.
  70. Simon, P.L.; de Klein, C.A.M.; Worth, W.; Rutherford, A.J.; Dieckow, J. The efficacy of Plantago lanceolata for mitigating nitrous oxide emissions from cattle urine patches. Sci. Total Environ. 2019, 691, 430–441.
  71. Somasiri, S.C.; Kenyon, P.R.; Kemp, P.D.; Morel, P.C.H.; Morris, S. Growth performance and carcass characteristics of lambs grazing forage mixes inclusive of plantain (Plantago lanceolata L.) and chicory (Cichorium intybus L.). Small Rumin. Res. 2015, 127, 20–27.
  72. Mirzaei, S.; Javanbakht, V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. Int. J. Biol. Macromol. 2019, 134, 1204.
  73. Mobin, M.; Rizvi, M. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1 M HCl solution. Carbohydr. Polym. 2017, 160, 172–183.
  74. Fierascu, I.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Anuta, V.; Velescu, B.S.; Jinga, M.; Jinga, V. A short overview of recent developments on antimicrobial coatings based on phytosynthesized metal nanoparticles. Coatings 2019, 9, 787.
  75. Fierascu, I.; Fierascu, I.C.; Brazdis, R.I.; Baroi, A.M.; Fistos, T.; Fierascu, R.C. Phytosynthesized metallic nanoparticles-between nanomedicine and toxicology. A brief review of 2019′s findings. Materials 2020, 13, 574.
  76. Fierascu, R.C.; Ortan, A.; Avramescu, S.M.; Fierascu, I. Phyto-nanocatalysts: Green synthesis, characterization, and applications. Molecules 2019, 24, 3418.
  77. Fierascu, R.C.; Fierascu, I.; Lungulescu, E.M.; Nicula, N.; Somoghi, R.; Diţu, L.M.; Ungureanu, C.; Sutan, A.N.; Drăghiceanu, O.A.; Paunescu, A.; et al. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. J. Mat. Sci. 2020, 55, 1915–1932.
  78. Romeh, A.A.A. Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut. 2018, 229, 147.
  79. Lohrasbi, S.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Ghasemi, Y.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron nanoparticles using Plantago major leaf extract and their application as a catalyst for the decolorization of azo dye. BioNanoScience 2019, 9, 317–322.
More
Information
Subjects: Others
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 399
Revisions: 3 times (View History)
Update Date: 22 Sep 2022
1000/1000