Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1592 2022-08-18 15:41:34 |
2 format correct Meta information modification 1592 2022-08-19 03:06:16 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Ferrando-Díez, A.;  Felip, E.;  Pous, A.;  Sirven, M.B.;  Margelí, M. Targeted Therapy for HER2-Positive Breast Cancer. Encyclopedia. Available online: https://encyclopedia.pub/entry/26284 (accessed on 27 April 2024).
Ferrando-Díez A,  Felip E,  Pous A,  Sirven MB,  Margelí M. Targeted Therapy for HER2-Positive Breast Cancer. Encyclopedia. Available at: https://encyclopedia.pub/entry/26284. Accessed April 27, 2024.
Ferrando-Díez, Angelica, Eudald Felip, Anna Pous, Milana Bergamino Sirven, Mireia Margelí. "Targeted Therapy for HER2-Positive Breast Cancer" Encyclopedia, https://encyclopedia.pub/entry/26284 (accessed April 27, 2024).
Ferrando-Díez, A.,  Felip, E.,  Pous, A.,  Sirven, M.B., & Margelí, M. (2022, August 18). Targeted Therapy for HER2-Positive Breast Cancer. In Encyclopedia. https://encyclopedia.pub/entry/26284
Ferrando-Díez, Angelica, et al. "Targeted Therapy for HER2-Positive Breast Cancer." Encyclopedia. Web. 18 August, 2022.
Targeted Therapy for HER2-Positive Breast Cancer
Edit

The development of several antiHuman Epidermal Growth Factor Receptor 2 (HER2) treatments over the last few years has improved the landscape of HER2-positive breast cancer. Despite this, relapse is still the main issue in HER2-positive breast cancer. The reasons for therapeutic failure lie in the heterogeneity of the disease itself, as well as in the drug resistance mechanisms.

breast cancer HER2-positive estrogen receptor positive triple-positive HER2-targeted therapy immunotherapy

1. HER2-Targeted Therapy

About 15–20% of breast carcinomas overexpress the Human epidermal growth factor receptor 2 (HER2) [1][2][3]. HER2-positive (HER2+) breast cancer (BC) is a heterogeneous and aggressive disease. Despite the dramatic improvement after the introduction of HER2-targeted therapy [4][5][6], 15–25% of patients in the early stage will still relapse [4][5][7][8]. Several neoadjuvant studies reported that response to anti-HER2 treatment might be determined by endocrine receptor status and intrinsic molecular subtypes [9]. However, they do not fully recapitulate tumor heterogeneity and other biological features have been linked to response heterogeneity to HER2-targeted therapy and the risk of relapse. In recent years, research has focused on developing novel drugs, including anti-HER2 therapies with alternative and optimized mechanisms of action and others targeting new potential pathways to prevent and overcome resistance.
In the neoadjuvant setting, dual HER2-blockade has significantly improved the pathologic complete response (pCR) rate, a potential surrogate endpoint of improved survival, with ranges of 40–65%, depending on the treatment regimens and duration of neoadjuvant treatment [1][8]. Beyond trastuzumab, other agents approved for early HER2+ BC include the monoclonal antibody pertuzumab, the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) and the reversible HER2 inhibitor lapatinib. Dual HER2-blockade administered in combination with chemotherapy has improved the survival of patients with metastatic BC. Beyond these, new agents have also shown increased progression-free survival (PFS) and overall survival (OS) in the metastatic setting, such as trastuzumab-deruxtecan (T-DXd) or tucatinib in combination with capecitabine and trastuzumab [10][11].
Beyond the HER2 receptor, other therapies to overcome resistance are being actively investigated in HER2+ BC. One approach has been blocking the cyclin-dependent kinases 4/6 (CDK4/6) as they are downstream many of the cellular pathways associated with resistance to HER2-targeted therapies with a key role in cell cycle and proliferation. Different trials have explored these strategies with encouraging and promising results, but definitive results are needed [12][13].
In addition, HER2+ BC is known to be more immunogenic than other BC subgroups, with high variability between tumors; thus, different immunotherapeutic agents are under investigation in this setting, with controversial results obtained to date [14][15].

2. HER2-Positive Disease–Current Approaches

High expression of HER2 on cell surface of HER2 has been used as an ideal target by different mechanisms. Trastuzumab and pertuzumab are HER2-directed monoclonal antibodies (mAbs) inducing the recruitment of several immune cells with a subsequent activation of passive immunity, in combination with chemotherapy, these agents downregulate the oncogenic intracellular pathways led by HER2 activation via homo- and hetero-dimerization in the cancer cell membrane [16]. This happens because pertuzumab, by lying on the dimerization interface of HER2, prevents the formation of the potent heterodimer HER2/HER3. This combined approach has shown synergy due to the relevant interactions between them and the immune system, leading to antibody-dependent cellular toxicity [17].
In recent years, HER2-directed ADCs have been developed using HER2 receptor to deliver cancer-killing agents inside the tumour cells with high sensitivity. For example, T-DM1 or T-DXd produce an increased cytotoxic effect in target cells and reduce target side effects [6]. These agents are molecules formed by an antibody linked to a chemotherapeutic agent, showing high efficacy due to the inherent activity of both the antibody and the chemotherapeutic agent but also, and especially in the case of new ADCs such as T-DXd, because they have an immune-modulator effect that affects neighboring cells [18][19].
Other options for targeting HER2+ BC include lapatinib, neratinib or tucatinib, small-molecule tyrosine kinase inhibitors (TKI). Lapatinib is an oral reversible inhibitor of the epidermal growth factor receptor (EGFR) and HER2 blocking the phosphorylation of tyrosine kinase residues. Consequently, it inhibits cell proliferation by regulating the mitogen-activated protein kinase (MAPK) and PIK3 pathways [20]. Neratinib, another oral irreversible inhibitor of EGFR, HER2 and HER4 [21], has been proven to induce cell cycle arrest and decrease HER2+ cell proliferation in preclinical studies [21]. Tucatinib is a selective and reversible HER2 inhibitor that potently inhibits signal transduction downstream of HER2 and HER3 via the MAPK and PI3K/protein kinase B (AKT) pathways [22]. Some studies have reported that patients who progress after trastuzumab might benefit from a TKI with or without trastuzumab, which may aid to overcome resistance [11][23][24][25][26].
Finally, a bidirectional crosstalk between HER2 and other receptors involved in BC such as Notch or TGF-β signaling, lead to resistance to different anti-HER2 treatments and involve higher aggressivity of HER2+BC disease. Although there are not current strategies under development targeting those pathways, their assessment might be useful as predictive and prognostic biomarkers.

3. The Role of the Estrogen Receptor in HER2-Positive Tumors

Despite the obvious biological difference, HER2+/ER+ tumors are not yet treated differently from HER2+/ER- BC, and endocrine therapy is only added as maintenance after a standard anti-HER2 agent in combination with chemotherapy. However, in the last years, the effort has been focused on finding combinations to improve chemotherapy regimen toxicity. One example is the PHERgain phase II trial, in which 67% of the patients were ER+. A trastuzumab plus pertuzumab chemotherapy-free regimen was evaluated, and hormone therapy was added in ER+ patients. Although the chemotherapy-free regimen had a significantly lower pCR rate after the neoadjuvant regimen, 35.4% of the patients achieved a pCR after neoadjuvant treatment. Interestingly, with the addition of endocrine therapy, ER+ status was not a predictor of treatment response. However, the HER2 immunochemistry score had an impact on pCR: a HER2 3+ immunohistochemistry score achieved a higher pCR rate than tumors with a 2+ score [27]. Another example is the PERTAIN phase II trial, that combined an aromatase inhibitor (AI) (anastrozole or letrozole) plus trastuzumab, with or without pertuzumab in HER2+/ER+ metastatic BC patients with no prior systemic therapy. The AI plus trastuzumab and pertuzumab group had a significant increase in mPFS, 18.89 vs. 15.80 months (hazard ratio, 0.65; 95% CI, 0.48 to 0.89; p = 0.007) [28]. Understanding the biological crosslink between the HER2 and ER pathways will help improve treatment and, therefore, patient outcomes in the future.

4. Role of Tumor Immunity in HER2-Positive Breast Cancer

The role of immunotherapeutic agents in HER2+ BC is becoming increasingly relevant as this BC subgroup has higher stromal TIL levels, implying that HER2+ disease is usually more immunogenic compared with other BC tumors [29][30][31]. Thus, several immunotherapeutic agents, such as novel HER2-directed mAbs, ADCs, vaccines and adoptive T cell therapies are currently being explored in patients with HER2+ tumors. However, not all HER2+ tumors are equally immunogenic and specific BC molecular subgroups beyond immunohistochemical (IHC) subtypes show differential responses. Interestingly, HER-2 subgroup is more immunogenic than Luminal A/B [32]. Both the percentage of TILs and the expression of different immune cells in the tumor microenvironment (CD8+, CD4+ Th1 and NK cells) have been associated with better prognosis; they may also contribute to the therapeutic effects of anti-HER2 targeted therapy [33].
In HER2+ BC, the interaction between the immune system and the tumor is complex and dynamic, involving different HER2-targeted treatments with chemotherapy and hormonotherapy, which modulate the action of HR status and tumor biology [30]. In addition, the different anti-HER2 treatments seem to modulate the tumor microenvironment and vice versa and the presence of high tumor immunity has been linked to a differential effect of these therapies [34][35]. For example, in vivo models, lapatinib stimulates tumor infiltration by CD4 + CD8 + IFN-γ-producing T cells via a STAT1-dependent pathway. The deficiency of STAT1 decreases the therapeutic efficacy of lapatinib, remarking the importance of immune activation in the lapatinib antitumor activity [36]. Another example, from the Neo ALTTO trial, is that T cell-driven immune signatures have been associated with pCR in patients treated with lapatinib, which highlights the role of immunity in modulating the activity of HER2-targeted therapy [36][37]. The expression of PD1 in the tumor microenvironment is a mechanism of tumor evasion, the combination of anti-HER2 monoclonal antibodies with anti-PD1 is synergic, improving therapeutic activity, reason why these combinations are being tested in different trials [38].
Furthermore, the modulation of immune cells occurring in HER2+ BC has shown a clinical impact on treatment efficacy [39][40]. In HER2+ BC, the NeoSphere [41] and NeoALTTO [42] trials have shown that tumors with low baseline TILs had lower pCRrates. Additionally, both NeoALTTO [42] and TRYPHAENA [43] trials found that TILs were associated with improved event-free survival when systemic therapy was given in the neoadjuvant setting. Loi et al., reported that TILs were predictive of benefit to adjuvant trastuzumab in the FinHER study [44]. A pooled analysis of six prospective neoadjuvant clinical trials found that increased TIL levels were associated with higher pCR rates and improved DFS in HER2+ BC [45]; however, the analysis did not show an association between increased TIL levels and OS. In contrast, in the adjuvant N9831 trial, patients who received chemotherapy alone, the presence of high TIL levels was significantly associated with an improvement in recurrence-free survival; on the other hand, this benefit was not seen in patients treated with chemotherapy plus trastuzumab [46]. In summary, higher levels of TILs have been correlated with better outcomes and response to anti-HER2 treatment; however, an enhanced understanding of the role played by the immune system in modulating therapy response to different anti-HER2 agents is still needed.
Due to the promising role of immunotherapy in HER2+ BC, the recent introduction of immune checkpoint inhibitors and other immunotherapeutic agents capable of unleashing an anti-tumoral immune response opens new possibilities for therapeutic combinations in this setting.

References

  1. Cronin, K.A.; Harlan, L.C.; Dodd, K.W.; Abrams, J.S.; Ballard-Barbash, R. Population-based Estimate of the Prevalence of HER-2 Positive Breast Cancer Tumors for Early Stage Patients in the US. Cancer Investig. 2010, 28, 963–968.
  2. Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182.
  3. Pernas, S.; Barroso-Sousa, R.; Tolaney, S.M. Optimal treatment of early stage HER2-positive breast cancer. Cancer 2018, 124, 4455–4466.
  4. Moja, L.; Tagliabue, L.; Balduzzi, S.; Parmelli, E.; Pistotti, V.; Guarneri, V.; D’Amico, R. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst. Rev. 2012, 2021, CD006243.
  5. Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.; Sledge, G.; Geyer, C.E., Jr.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.; et al. Trastuzumab Plus Adjuvant Chemotherapy for Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: Planned Joint Analysis of Overall Survival from NSABP B-31 and NCCTG N9831. J. Clin. Oncol. 2014, 32, 3744–3752.
  6. Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New Engl. J. Med. 2001, 344, 783–792.
  7. Cameron, D.; Piccart-Gebhart, M.J.; Gelber, R.D.; Procter, M.; Goldhirsch, A.; de Azambuja, E.; Castro, G., Jr.; Untch, M.; Smith, I.; Gianni, L.; et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 2017, 389, 1195–1205.
  8. Slamon, D.; Eiermann, W.; Robert, N.; Giermek, J.; Martin, M.; Jasiowka, M.; Mackey, J.; Chan, A.; Liu, M.-C.; Pinter, T.; et al. Abstract S5-04: Ten year follow-up of BCIRG-006 comparing doxorubicin plus cyclophosphamide followed by docetaxel (AC→T) with doxorubicin plus cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2+ early breast cancer. Cancer Res. 2016, 76, S5-04.
  9. Carey, L.A.; Berry, D.A.; Cirrincione, C.T.; Barry, W.T.; Pitcher, B.N.; Harris, L.N.; Ollila, D.W.; Krop, I.E.; Henry, N.L.; Weckstein, D.J.; et al. Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. J. Clin. Oncol. 2016, 34, 542–549.
  10. André, F.; Shahidi, J.; Lee, C.; Wang, K.; Krop, I. 197TiP—Phase III study of trastuzumab deruxtecan vs. investigator’s choice in T-DM1-pretreated HER2+ breast cancer. Ann. Oncol. 2019, 30, iii63.
  11. Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609.
  12. Ciruelos, E.M.; Villagrasa, P.; Pascual, T.; Oliveira, M.; Pernas, S.; Paré, L.; Escrivá-De-Romaní, S.; Manso, L.; Adamo, B.; Martínez, E.; et al. Palbociclib and Trastuzumab in HER2-Positive Advanced Breast Cancer: Results from the Phase II SOLTI-1303 PATRICIA Trial. Clin. Cancer Res. 2020, 26, 5820–5829.
  13. Loi, S.; Giobbie-Hurder, A.; Gombos, A.; Bachelot, T.; Hui, R.; Curigliano, G.; Campone, M.; Biganzoli, L.; Bonnefoi, H.; Jerusalem, G.; et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): A single-arm, multicentre, phase 1b–2 trial. Lancet Oncol. 2019, 20, 371–382.
  14. Emens, L.A.; Esteva, F.J.; Beresford, M.; Saura, C.; De Laurentiis, M.; Kim, S.-B.; Im, S.-A.; Wang, Y.; Salgado, R.; Mani, A.; et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): A phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020, 21, 1283–1295.
  15. Metzger, O.; Mandrekar, S.; Loibl, S.; Mundhenke, C.; Seiler, S.; Valagussa, P.; Lim, E.; Tripathy, D.; Winer, E.; Huang, C.; et al. Abstract OT3-02-07: PATINA: A ran-domized, open label, phase III trial to evaluate the efficacy and safety of palbociclib + anti-HER2 therapy + endocrine therapy (ET) vs. anti-HER2 therapy + ET after induction treatment for hormone receptor positive (HR+)/HER2-positive metastatic breast cancer (MBC). Cancer Res. 2019, 79 (Suppl. S4), OT3-02-07.
  16. Costa, R.L.B.; Czerniecki, B.J. Clinical development of immunotherapies for HER2+ breast cancer: A review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 2020, 6, 10.
  17. Swain, S.M.; Baselga, J.; Kim, S.-B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.-M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. New Engl. J. Med. 2015, 372, 724–734.
  18. Bakhtiar, R. Antibody drug conjugates. Biotechnol. Lett. 2016, 38, 1655–1664.
  19. Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; et al. Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody–Cytotoxic Drug Conjugate. Cancer Res. 2008, 68, 9280–9290.
  20. Xia, W.; Mullin, R.J.; Keith, B.R.; Liu, L.-H.; Ma, H.; Rusnak, D.W.; Owens, G.; Alligood, K.J.; Spector, N.L. Anti-tumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 2002, 21, 6255–6263.
  21. Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; et al. Antitumor Activity of HKI-272, an Orally Active, Irreversible Inhibitor of the HER-2 Tyrosine Kinase. Cancer Res. 2004, 64, 3958–3965.
  22. Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models. Mol. Cancer Ther. 2020, 19, 976–987.
  23. Saura, C.; Oliveira, M.; Feng, Y.-H.; Dai, M.-S.; Chen, S.-W.; Hurvitz, S.A.; Kim, S.-B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With ≥ 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149.
  24. Pohlmann, P.R.; Mayer, I.A.; Mernaugh, R. Resistance to Trastuzumab in Breast Cancer. Clin. Cancer Res. 2009, 15, 7479–7491.
  25. Goutsouliak, K.; Veeraraghavan, J.; Sethunath, V.; De Angelis, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol. 2019, 17, 233–250.
  26. Schlam, I.; Swain, S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now. NPJ Breast Cancer 2021, 7, 56.
  27. Pérez-García, J.M.; Gebhart, G.; Borrego, M.R.; Stradella, A.; Bermejo, B.; Schmid, P.; Marmé, F.; Escrivá-de-Romani, S.; Calvo, L.; Ribelles, N.; et al. Chemotherapy de-escalation using an 18 F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHER-Gain): A multicentre, randomised, open-label, non-comparative, phase 2 trial. Lancet Oncol. 2021, 22, 858–871.
  28. Rimawi, M.; Ferrero, J.M.; de la Haba-Rodriguez, J.; Poole, C.; De Placido, S.; Osborne, C.K.; Hegg, R.; Easton, V.; Wohlfarth, C.; Arpino, G. First-Line Trastuzumab Plus an Aromatase Inhibitor, With or Without Pertuzumab, in Human Epidermal Growth Factor Receptor 2-Positive and Hormone Receptor-Positive Metastatic or Locally Advanced Breast Cancer (PERTAIN): A Randomized, Open-Label Phase II Trial. J. Clin. Oncol. 2018, 36, 2826–2835.
  29. Spencer, S.; Mark, D.; Koei, C.; Zuzana, T.; Moqing, L.; Tiera, L.; Wallace, T.; Rebecca, S.; Michel, N.; Elmar, B.; et al. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst. 2018, 6, 329–342.e6.
  30. Griguolo, G.; Pascual, T.; Dieci, M.V.; Guarneri, V.; Prat, A. Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. J. Immunother. Cancer 2019, 7, 90.
  31. Stanton, S.E.; Adams, S.; Disis, M.L. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol. 2016, 2, 1354–1360.
  32. Miller, L.D.; Chou, J.A.; Black, M.A.; Print, C.; Chifman, J.; Alistar, A.; Putti, T.; Zhou, X.; Bedognetti, D.; Hendrickx, W.; et al. Immunogenic Subtypes of Breast Cancer Delineated by Gene Classifiers of Immune Responsiveness. Cancer Immunol. Res. 2016, 4, 600–610.
  33. Bianchini, G.; Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol. 2014, 15, e58–e68.
  34. Salgado, R.; Denkert, C.; Campbell, C.; Savas, P.; Nuciforo, P.; Aura, C.; de Azambuja, E.; Eidtmann, H.; Ellis, C.E.; Baselga, J.; et al. Tumor-Infiltrating Lymphocytes and Associations with Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated with Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA Oncol. 2015, 1, 448–455.
  35. Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-Associated Lymphocytes as an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Clin. Oncol. 2010, 28, 105–113.
  36. Hannesdóttir, L.; Tymoszuk, P.; Parajuli, N.; Wasmer, M.-H.; Philipp, S.; Daschil, N.; Datta, S.; Koller, J.-B.; Tripp, C.H.; Stoitzner, P.; et al. Lapatinib and doxorubicin enhance the Stat1-dependent antitumor immune response. Eur. J. Immunol. 2013, 43, 2718–2729.
  37. Powles, R.L.; Redmond, D.; Sotiriou, C.; Loi, S.; Fumagalli, D.; Nuciforo, P.; Harbeck, N.; de Azambuja, E.; Sarp, S.; Di Cosimo, S.; et al. Association of T-Cell Receptor Repertoire Use with Response to Combined Trastuzumab-Lapatinib Treatment of HER2-Positive Breast Cancer: Secondary Analysis of the NeoALTTO Randomized Clinical Trial. JAMA Oncol. 2018, 4, e181564.
  38. Ledys, F.; Kalfeist, L.; Galland, L.; Limagne, E.; Ladoire, S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers 2021, 13, 5999.
  39. Dieci, M.; Miglietta, F.; Guarneri, V. Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications. Cells 2021, 10, 223.
  40. Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tu-mor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821.
  41. Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; De La Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32.
  42. de Azambuja, E.; Holmes, A.P.; Piccart-Gebhart, M.; Holmes, E.; Di Cosimo, S.; Swaby, R.F.; Untch, M.; Jackisch, C.; Lang, I.; Smith, I.; et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): Survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014, 15, 1137–1146.
  43. Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.-F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284.
  44. Loi, S.; Michiels, S.; Salgado, R.; Sirtaine, N.; Jose, V.; Fumagalli, D.; Kellokumpu-Lehtinen, P.-L.; Bono, P.; Kataja, V.; Desmedt, C.; et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: Results from the FinHER trial. Ann. Oncol. 2014, 25, 1544–1550.
  45. Barroso-Sousa, R.; Barry, W.; Guo, H.; Dillon, D.; Tan, Y.; Fuhrman, K.; Osmani, W.; Getz, A.; Baltay, M.; Dang, C.; et al. The immune profile of small HER2-positive breast cancers: A secondary analysis from the APT trial. Ann. Oncol. 2019, 30, 575–581.
  46. Perez, E.A.; Ballman, K.V.; Tenner, K.S.; Thompson, E.A.; Badve, S.S.; Bailey, H.; Baehner, F.L. Association of Stromal Tu-mor-Infiltrating Lymphocytes with Recurrence-Free Survival in the N9831 Adjuvant Trial in Patients with Early-Stage HER2-Positive Breast Cancer. JAMA Oncol. 2016, 2, 56–64.
More
Information
Subjects: Oncology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , ,
View Times: 235
Revisions: 2 times (View History)
Update Date: 19 Aug 2022
1000/1000