Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2184 word(s) 2184 2022-03-15 07:46:02 |
2 update layout and reference Meta information modification 2184 2022-03-23 04:54:29 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Domnich, A. COVID-19 and Seasonal Influenza Vaccination. Encyclopedia. Available online: https://encyclopedia.pub/entry/20873 (accessed on 26 July 2024).
Domnich A. COVID-19 and Seasonal Influenza Vaccination. Encyclopedia. Available at: https://encyclopedia.pub/entry/20873. Accessed July 26, 2024.
Domnich, Alexander. "COVID-19 and Seasonal Influenza Vaccination" Encyclopedia, https://encyclopedia.pub/entry/20873 (accessed July 26, 2024).
Domnich, A. (2022, March 22). COVID-19 and Seasonal Influenza Vaccination. In Encyclopedia. https://encyclopedia.pub/entry/20873
Domnich, Alexander. "COVID-19 and Seasonal Influenza Vaccination." Encyclopedia. Web. 22 March, 2022.
COVID-19 and Seasonal Influenza Vaccination
Edit

SARS-CoV-2 and influenza are the main respiratory viruses for which effective vaccines are currently available. Strategies in which COVID-19 and influenza vaccines are administered simultaneously or combined into a single preparation are advantageous and may increase vaccination uptake.

influenza COVID-19 vaccination vaccine co-administration

1. Introduction

Vaccination against COVID-19 is a cornerstone public health intervention to tackle the ongoing pandemic [1]. Analogously, seasonal influenza vaccination (SIV) is considered one of the most effective means of reducing the burden of disease, which in the pre-COVID-19 era caused on average 250,000–500,000 deaths worldwide each year [2][3]. Although circulation of the influenza virus has diminished drastically since 2020, the ongoing 2021/22 northern hemisphere winter season is characterized by the circulation of both SARS-CoV-2 and influenza [4]. Moreover, in the 2021/22 season, there is an overlap between the administration of booster doses of COVID-19 vaccines and the SIV campaign [5][6].
Very little is yet known about the interaction between SARS-CoV-2 and influenza viruses. Dadashi et al. [7] estimated a pooled prevalence of SARS-CoV-2 and influenza co-infection of 0.8% (95% confidence interval (CI): 0.4–1.3%) with marked regional heterogeneity, ranging from 0.4% in the Americas to 4.5% in Asia. A large study conducted in England [8] reported that, while individuals positive for influenza had 58% (95%: 44–69%) lower odds of also testing positive for SARS-CoV-2, co-infected individuals had worse clinical outcomes. Specifically, co-infected patients were approximately twice as likely to die (odds ratio (OR) 2.27; 95% CI: 1.23–4.19) as subjects positive only for SARS-CoV-2 [8]. Some experimental evidence has provided useful insights into these poorer outcomes in co-infected patients. Indeed, it has been observed [9] that prior infection with type A influenza virus promotes SARS-CoV-2 entry and infectiousness in both cell and animal models, probably owing to the ability of the former to increase the expression of angiotensin-converting enzyme 2 (ACE2).

2. Non-Specific Effects of Seasonal Influenza Vaccination on COVID-19-Related Outcomes

2.1. Real-World Evidence

Some early ecological studies [10][11], which are useful for hypothesis generation [12], found a negative correlation between SIV coverage rates and COVID-19-related outcomes. For instance, in Italy, which was the first western country where SARS-CoV-2 spread widely, a negative correlation (r  =  −0.59, p  =  0.005) between regional SIV coverage rates in the elderly and COVID-19 deaths was demonstrated [10]. However, subsequent cohort studies on this non-specific effect of SIV yielded contrasting results: some [13][14][15] found a protective effect, while others did not find any significant association [16][17]. To summarize the body of available observational studies, Wang et al. [18] conducted a systematic review and meta-analysis of this non-specific association. In their random-effects model, a significant reduction in laboratory-confirmed cases of SARS-CoV-2 was found in subjects immunized with SIV, with a pooled (n = 9 studies) OR of 0.86 (95% CI: 0.79–0.94). On the other hand, the association between SIV and some other COVID-19-related outcomes, such as hospitalization (OR 0.74; 95% CI: 0.51–1.06), admission to intensive care units (OR 0.63; 95% CI: 0.22–1.81) or mortality (OR 0.89; 95% CI: 0.73–1.09) was not statistically significant [18].

2.2. Underlying Immunological Mechanisms

Different immunological mechanisms beyond the observed non-specific heterologous effects of SIV on COVID-19-related clinical endpoints, have been proposed. These mechanisms may involve either innate (the so-called “trained immunity”) or adaptive (bystander activation and cross-reactivity) compartments of the immune system [19]. Bystander activation refers to a type of heterologous response which is exerted by adjacent, but not relevant, T cells with different specificity. These heterologous T cells are probably activated by cytokines as a result of the activation of cells during the classical response [20]. By contrast, the cross-reactivity theory holds that T cells involved in the classical adaptive immune response may cross-react with an antigen presenting some degree of amino acid similarity [19]. Finally, the trained immunity hypothesis postulates that the innate immune cells may be primed upon encountering exogenous or endogenous insults, causing long-term metabolic and epigenetic reprogramming of these cells and leading to an enhanced response to a second challenge [21][22][23].
The available experimental data on influenza virus- and/or SIV-induced cross-reactive or even cross-protective antibodies against SARS-CoV-2 are controversial. For instance, with regard to T and B cell reactivity, Reche [24] concluded that influenza viruses do not have epitopes that cross-react with SARS-CoV-2. Murugavelu et al. [25] tested polyclonal sera obtained from SARS-CoV-2-positive subjects with high anti-spike neutralizing antibody titers and found some degree of cross-reactivity with influenza virus hemagglutinin in both enzyme-linked immunosorbent (ELISA) and Western blot assays. However, a subsequent analysis demonstrated that these hemagglutinin cross-reactive binding antibodies were not neutralizing. More recently, Almazán et al. [26] investigated the role of the small NGVEGF peptide—which is identical, or very similar, to a peptide found in most contemporary A(H1N1)pdm09 strains—in inducing cross-reactive antibodies. This peptide is present in the most critical part (N481–F486) of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, which interacts with the ACE2 receptor, while in influenza A(H1N1)pdm09 strains, the NGVEGF/NGVKGF peptide is located in an immunodominant region of the neuraminidase. Approximately two thirds of blood donors (n = 328) had detectable levels of antibodies to this peptide. Immunization with a quadrivalent egg-based influenza vaccine (QIVe) enhanced the anti-SARS-CoV-2 response: subjects with no recent influenza infection had low binding inhibitory activity (average of 32.7%), which was enhanced by QIVe administration (average of 55%) and further enhanced by the BNT162b2 (Comirnaty; Pfizer Inc., New York, NY, USA and BioNTech, Mainz, Germany) vaccine (average of 94%). The NGVEGF peptides also activated CD8+ cells in 20% of donors. Finally, the authors identified 11 additional CD8+ cell peptides that potentially cross-reacted with both SARS-CoV-2 and influenza viruses; depending on the type of human leukocyte antigen (HLA), these peptides may protect against SARS-CoV-2 in about 40–71% of individuals [26].
The bystander activation mechanism has been partially proven by Pallikkuth et al. [27]. Specifically, in their cohort of healthcare workers, A(H1N1) antigen-specific CD4+ cells were present in 92% and 76% of SARS-CoV-2-positive and -negative subjects, respectively. The A(H1N1) CD4+ response also showed a strong positive correlation with SARS-CoV-2-specific CD4+ cells [27].
The trained immunity hypothesis has recently drawn particular attention. It was first documented in the case of BCG (Bacillus Calmette–Guérin) vaccine, and then measles, oral polio and, more recently, SIV [19][20]. Experimental confirmation of SIV-induced trained immunity against SARS-CoV-2 was recently obtained in a Dutch study [28]. Following the demonstration of a 37–49% relative risk reduction of SARS-CoV-2 infection among healthcare workers vaccinated with QIVe (compared with non-vaccinated subjects), the authors investigated the biological plausibility of this observation in a well-established in vitro model. Specifically, following the stimulation of peripheral blood mononuclear cells with QIVe and BCG, an increase in the production of cytokines was observed. Re-stimulation of these cells with a heat-inactivated SARS-CoV-2 strain induced a higher production of interleukin (IL)-1 receptor antagonist (IL-1RA), while the production of pro-inflammatory IL-1β and IL-6 was reduced [28]. An Italian study [29] conducted among healthcare workers (n = 710) who received 2 doses of the BNT162b2 vaccine found that, in subjects previously vaccinated with the quadrivalent cell culture-based influenza vaccine (QIVc; Flucelvax Tetra, Seqirus Netherlands B.V., Amsterdam, The Netherlands) plus pneumococcal vaccines or with QIVc alone, microneutralization titers against SARS-CoV-2 were 58% (p = 0.01) and 42% (p = 0.07) higher, respectively, than in subjects who did not receive any vaccine. By contrast, no significant differences were found for the anti-spike and interferon-γ responses [29].

3. Safety, Immunogenicity and Efficacy of COVID-19 and Influenza Vaccine Co-Administration

As of February 2022, three randomized controlled trials (RCTs) [30][31][32] on COVID-19 and SIV vaccine co-administration are available. In a phase IV trial conducted in the United Kingdom (UK) [30], adults were randomized (1:1; n = 679) to receive either a second dose of ChAdOx1 (Vaxzevria, AstraZeneca, Cambridge, UK) or BNT162b2 vaccines, together with an age-appropriate SIV (QIVc, recombinant quadrivalent influenza vaccine (QIVr; Supemtek, Sanofi Pasteur, Lyon, France) for subjects aged 18–64 years and MF59-adjuvanted trivalent influenza vaccine (aTIV; Fluad, Seqirus) for those aged ≥65 years) or ChAdOx1/BNT162b2 together with placebo. Three weeks later, those who had received placebo received SIV, and vice versa. Toback et al. [31] reported the results of a phase III efficacy RCT, in which a subset of adults was randomized (1:1; n = 431) to receive the first dose of NVX-CoV2373 (Nuvaxovid, Novavax CZ a.s., Jevany, Czech Republic) plus SIV (QIVc and aTIV for subjects aged 18–64 and ≥65 years, respectively) or SIV alone. Finally, the interim results of a phase II RCT have recently been reported [32]; in this trial, elderly individuals (≥65 years) were randomized (1:1:1; n = 431) to receive a second dose of mRNA-1273 (Spikevax, Moderna, Cambridge, MA, USA) plus a high-dose quadrivalent influenza vaccine (hdQIV; Fluzone High-Dose Quadrivalent, Sanofi Pasteur, Lyon, France), a dose of hdQIV alone or a second dose of mRNA-1273 alone. In all three RCTs [31][32], vaccines were co-administered in opposite arms in each subject.
All three RCTs [31][32] reported no major safety concerns regarding COVID-19 + SIV co-administration. Specifically, as reported in Table 1, the overall rate of solicited local (especially pain in the injection site) and systemic adverse events was similar between subjects who received COVID-19 + SIV and those who received the COVID-19 vaccine alone. The adverse events reported were mostly mild-to-moderate and self-limiting. A similar picture was seen with regard to unsolicited adverse events.
Table 1. Rate (%) of solicited local and systemic adverse events in COVID-19 and influenza vaccine co-administration groups, as compared with groups to whom either vaccine was administered alone.
Adverse Event Comparison Vaccine Administration Pattern Reference
COVID-19 Vaccine SIV COVID-19 + SIV COVID-19 Alone SIV Alone
Any local, % ChAdOx1 1 QIVc 1 84 81 [30]
BNT162b2 1 QIVc 1 96 94 [30]
ChAdOx1 1 QIVr 1 85 86 [30]
BNT162b2 1 QIVr 1 96 89 [30]
ChAdOx1 2 aTIV 2 77 65 [30]
BNT162b2 2 aTIV 2 76 79 [30]
mRNA-1273 2 hdQIV 2 86 91 62 [32]
NVX-CoV2373 1 QIVc 1 73 63 39 [31]
NVX-CoV2373 2 aTIV 2 39 35 46 [31]
Any systemic, % ChAdOx1 1 QIVc 1 81 83 [30]
BNT162b2 1 QIVc 1 87 81 [30]
ChAdOx1 1 QIVr 1 74 72 [30]
BNT162b2 1 QIVr 1 89 82 [30]
ChAdOx1 2 aTIV 2 72 62 [30]
BNT162b2 2 aTIV 2 59 71 [30]
mRNA-1273 2 hdQIV 2 80 84 49 [32]
NVX-CoV2373 1 QIVc 1 62 50 47 [31]
NVX-CoV2373 2 aTIV 2 39 28 55 [31]
1 Working-age adults (18–64 years); 2 older adults (≥65 years); aTIV, MF59-adjuvanted trivalent influenza vaccine; hdQIV, high-dose quadrivalent influenza vaccine; QIVc, cell-based quadrivalent influenza vaccine; QIVr, recombinant quadrivalent influenza vaccine.
It has generally been found [30][31][32] that the humoral IgG response measured by means of the hemagglutination inhibition (HAI) assay approximately 3 weeks after immunization towards any SIV strain is preserved in COVID-19 + SIV co-administration groups. Indeed, apart from the statistical significance, geometric mean ratios of all pairwise comparisons have proved to be >0.67, which is the non-inferiority margin (Table 2). Lazarus et al. [30] did not observe any significant difference in geometric mean titers (GMTs) between most co-administration groups (ChAdOx1 + QIVc, ChAdOx1 + QIVr, ChAdOx1 + aTIV, BNT162b2 + QIVc or BNT162b2 + aTIV) and groups receiving SIVs alone. The only exception was the immune response to A(H1N1)pdm09, B/Victoria and B/Yamagata; in these cases, GMTs were 20–38% higher in the BNT162b2 + QIVr group than in individuals who received QIVr only. The IgG response to A(H3N2) was similar. Toback et al. [31] did not find any significant difference in HAI titers between COVID-19 + SIV and placebo + SIV groups, regardless of the strain or vaccine (QIVc or aTIV). Analogously, the humoral immune response towards all four SIV strains was similar in individuals who received mRNA-1273 + hdQIV or hdQIV alone [32].
Table 2. Hemagglutination inhibition IgG geometric mean ratios against influenza vaccine strains in COVID-19 + seasonal influenza vaccine co-administration groups, as compared with groups to whom either vaccine was administered alone.
Influenza Vaccine Strain COVID-19 Vaccine [Reference]
BNT162b2 [30] mRNA-1273 [32] ChAdOx1 [30] NVX-CoV2373 [31]
QIVc 1 A(H1N1)pdm09 1.05 (0.91–1.21) 4 1.05 (0.91–1.21) 4 1.09 (ns) 6
A(H3N2) 1.06 (0.95–1.18) 4 1.08 (0.96–1.21) 4 1.08 (ns) 6
B/Victoria 1.03 (0.93–1.14) 4 1.05 (0.94–1.18) 4 1.03 (ns) 6
B/Yamagata 0.94 (0.85–1.05) 4 0.98 (0.88–1.10) 4 0.99 (ns) 6
QIVr 1 A(H1N1)pdm09 1.38 (1.11–1.71) 4 0.86 (0.74–0.99) 4
A(H3N2) 1.03 (0.87–1.23) 4 1.03 (0.91–1.15) 4
B/Victoria 1.20 (1.02–1.42) 4 1.07 (0.96–1.19) 4
B/Yamagata 1.24 (1.05–1.47) 4 1.06 (0.94–1.18) 4
aTIV 2 A(H1N1)pdm09 1.05 (0.87–1.27) 4 1.15 (1.01–1.32) 4 1.41 (ns) 6
A(H3N2) 1.18 (1.02–1.37) 4 1.00 (0.89–1.11) 4 0.87 (ns) 6
B/Victoria 1.08 (0.94–1.25) 4 1.01 (0.91–1.12) 4 0.54 (ns) 6
B/Yamagata 3 1.00 (0.86–1.15) 4 0.92 (0.83–1.03) 4 0.81 (ns) 6
hdQIV 2 A(H1N1)pdm09 0.99 (ns) 5
A(H3N2) 0.91 (ns) 5
B/Victoria 0.97 (ns) 5
B/Yamagata 0.91 (ns) 5
1 Working-age adults (18–64 years); 2 older adults (≥65 years); 3 strain was not present in the vaccine formulation; 4 seasonal influenza vaccine first vs. placebo first; 5 mRNA-1273 + hdQIV vs. hdQIV alone, geometric mean ratios were calculated from the geometric mean titers provided by the authors; 6 NVX-CoV2373 + seasonal influenza vaccine vs. placebo + seasonal influenza vaccine, geometric mean ratios were calculated from the geometric mean titers provided by the authors; aTIV, MF59-adjuvanted trivalent influenza vaccine; hdQIV, high-dose quadrivalent influenza vaccine; ns, non-significant (p > 0.05); QIVc, cell-based quadrivalent influenza vaccine; QIVr, recombinant quadrivalent influenza vaccine.
Similar results were reported with regard to anti-spike neutralizing antibody titers (Table 3). Lazarus et al. [30] and Izikson et al. [32] did not find any significant differences between the co-administration groups and individuals who received COVID-19 vaccines alone. By contrast, some immunological inference was reported in the RCT by Toback et al. [31] After adjustment for baseline titers, age and the treatment arm, the geometric mean ratio of the anti-spike humoral response in NVX-CoV2373 + QIVc/aTIV versus NVX-CoV2373 alone was 0.57 (95% CI: 0.47–0.70). On the other hand, this decrease did not seem to translate into a corresponding decrease in vaccine efficacy. For instance, absolute vaccine efficacy against laboratory-confirmed symptomatic COVID-19 in adults (18–64 years) was 87.5% (95% CI: −0.2–98.4%) and 89.8% (95% CI: 79.7–95.5%) in the influenza sub-study and main study, respectively [31].
Table 3. Anti-spike IgG geometric mean ratios in COVID-19/influenza vaccine co-administration groups, as compared with groups to whom either vaccine was administered alone.
Influenza Vaccine COVID-19 Vaccine [Reference]
BNT162b2 [30] mRNA-1273 [32] ChAdOx1 [30] NVX-CoV2373 [31]
QIVc 1 0.90 (0.80–1.01) 3 0.92 (0.81–1.04) 3 0.66 (NA) 5
QIVr 1 0.86 (0.72–1.03) 3 0.92 (0.81–1.04) 3
aTIV 2 0.97 (0.83–1.13) 3 1.02 (0.91–1.14) 3 0.71 (NA) 5
hdQIV 2 0.97 (0.79–1.19) 4
1 Working-age adults (18–64 years); 2 older adults (≥65 years); 3 COVID-19 vaccine + placebo vs. COVID-19 vaccine + seasonal influenza vaccine; 4 mRNA-1273 + hdQIV vs. hdQIV alone; 5 NVX-CoV2373 + seasonal influenza vaccine vs. placebo + NVX-CoV2373 alone, geometric mean ratios were calculated from the geometric mean titers provided by the authors; aTIV, MF59-adjuvanted trivalent influenza vaccine; hdQIV, high-dose quadrivalent influenza vaccine; NA, not available; QIVc, cell-based quadrivalent influenza vaccine; QIVr, recombinant quadrivalent influenza vaccine.

References

  1. Schaffer DeRoo, S.; Pudalov, N.J.; Fu, L.Y. Planning for a COVID-19 Vaccination Program. JAMA 2020, 323, 2458–2459.
  2. World Health Organization (WHO). Vaccines against influenza WHO position paper—November 2012. Wkly. Epidemiol. Rec. 2012, 87, 461–476.
  3. Paget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Iuliano, A.D.; Bresee, J.; Simonsen, L.; Viboud, C. Global Seasonal Influenza-associated Mortality Collaborator Network and GLaMOR Collaborating Teams. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 020421.
  4. World Health Organization (WHO). FluNet. Available online: https://www.who.int/tools/flunet (accessed on 7 February 2022).
  5. Fast, H.E.; Zell, E.; Murthy, B.P.; Murthy, N.; Meng, L.; Scharf, L.G.; Black, C.L.; Shaw, L.; Chorba, T.; Harris, L.Q. Booster and additional primary dose COVID-19 vaccinations among adults aged ≥65 years—United States, August 13, 2021–November 19, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1735–1739.
  6. Grohskopf, L.A.; Alyanak, E.; Ferdinands, J.M.; Broder, K.R.; Blanton, L.H.; Talbot, H.K.; Fry, A.M. Prevention and control of seasonal influenza with vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021–2022 influenza season. MMWR Recomm. Rep. 2021, 70, 1–28.
  7. Dadashi, M.; Khaleghnejad, S.; Abedi Elkhichi, P.; Goudarzi, M.; Goudarzi, H.; Taghavi, A.; Vaezjalali, M.; Hajikhani, B. COVID-19 and influenza co-infection: A systematic review and meta-analysis. Front. Med. 2021, 8, 681469.
  8. Stowe, J.; Tessier, E.; Zhao, H.; Guy, R.; Muller-Pebody, B.; Zambon, M.; Andrews, N.; Ramsay, M.; Lopez Bernal, J. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: A test-negative design. Int. J. Epidemiol. 2021, 50, 1124–1133.
  9. Bai, L.; Zhao, Y.; Dong, J.; Liang, S.; Guo, M.; Liu, X.; Wang, X.; Huang, Z.; Sun, X.; Zhang, Z.; et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res. 2021, 31, 395–403.
  10. Amato, M.; Werba, J.P.; Frigerio, B.; Coggi, D.; Sansaro, D.; Ravani, A.; Ferrante, P.; Veglia, F.; Tremoli, E.; Baldassarre, D. Relationship between influenza vaccination coverage rate and COVID-19 outbreak: An Italian ecological study. Vaccines 2020, 8, 535.
  11. Marín-Hernández, D.; Schwartz, R.E.; Nixon, D.F. Epidemiological evidence for association between higher influenza vaccine uptake in the elderly and lower COVID-19 deaths in Italy. J. Med. Virol. 2021, 93, 64–65.
  12. Morgenstern, H. Ecologic studies in epidemiology: Concepts, principles, and methods. Annu. Rev. Public Health 1995, 16, 61–81.
  13. Domnich, A.; Orsi, A.; Sticchi, L.; Panatto, D.; Dini, G.; Ferrari, A.; Ogliastro, M.; Boccotti, S.; De Pace, V.; Ricucci, V.; et al. Effect of the 2020/21 season influenza vaccine on SARS-CoV-2 infection in a cohort of Italian healthcare workers. Vaccine 2022, 40, 1755–1760.
  14. Conlon, A.; Ashur, C.; Washer, L.; Eagle, K.A.; Hofmann Bowman, M.A. Impact of the influenza vaccine on COVID-19 infection rates and severity. Am. J. Infect. Control 2021, 49, 694–700.
  15. Wilcox, C.R.; Islam, N.; Dambha-Miller, H. Association between influenza vaccination and hospitalisation or all-cause mortality in people with COVID-19: A retrospective cohort study. BMJ Open Respir. Res. 2021, 8, e000857.
  16. Martínez-Baz, I.; Trobajo-Sanmartín, C.; Arregui, I.; Navascués, A.; Adelantado, M.; Indurain, J.; Fresán, U.; Ezpeleta, C.; Castilla, J. Influenza vaccination and risk of SARS-CoV-2 infection in a cohort of health workers. Vaccines 2020, 8, 611.
  17. Pedote, P.D.; Termite, S.; Gigliobianco, A.; Lopalco, P.L.; Bianchi, F.P. Influenza vaccination and health outcomes in COVID-19 patients: A retrospective cohort study. Vaccines 2021, 9, 358.
  18. Wang, R.; Liu, M.; Liu, J. The association between influenza vaccination and COVID-19 and its outcomes: A systematic review and meta-analysis of observational studies. Vaccines 2021, 9, 529.
  19. Marín-Hernández, D.; Nixon, D.F.; Hupert, N. Heterologous vaccine interventions: Boosting immunity against future pandemics. Mol. Med. 2021, 27, 54.
  20. van Aalst, S.; Ludwig, I.S.; van der Zee, R.; van Eden, W.; Broere, F. Bystander activation of irrelevant CD4+ T cells following antigen-specific vaccination occurs in the presence and absence of adjuvant. PLoS ONE 2017, 12, e0177365.
  21. Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388.
  22. Sánchez-Ramón, S.; Conejero, L.; Netea, M.G.; Sancho, D.; Palomares, Ó.; Subiza, J.L. Trained immunity-based vaccines: A new paradigm for the development of broad-spectrum anti-infectious formulations. Front. Immunol. 2018, 9, 2936.
  23. Bekkering, S.; Domínguez-Andrés, J.; Joosten, L.A.B.; Riksen, N.P.; Netea, M.G. Trained immunity: Reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 2021, 39, 667–693.
  24. Reche, P.A. Potential cross-reactive immunity to SARS-CoV-2 from common human pathogens and vaccines. Front Immunol. 2020, 11, 586984.
  25. Murugavelu, P.; Perween, R.; Shrivastava, T.; Singh, V.; Ahmad Parray, H.; Singh, S.; Chiranjivi, A.K.; Thiruvengadam, R.; Singh, S.; Yadav, N.; et al. Non-neutralizing SARS-CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. Int. Immunopharmacol. 2021, 99, 108020.
  26. Almazán, N.M.; Rahbar, A.; Carlsson, M.; Hoffman, T.; Kolstad, L.; Ronnberg, B.; Pantalone, M.R.; Fuchs, I.; Nauclér, A.; Ohlin, M. Influenza A H1N1-Mediated Pre-Existing Immunity to SARS-CoV-2 Predicts COVID-19 Outbreak Dynamics. Available online: https://www.medrxiv.org/content/10.1101/2021.12.23.21268321v1 (accessed on 7 February 2022).
  27. Pallikkuth, S.; Williams, E.; Pahwa, R.; Hoffer, M.; Pahwa, S. Association of flu specific and SARS-CoV-2 specific CD4 T cell responses in SARS-CoV-2 infected asymptomatic heath care workers. Vaccine 2021, 39, 6019–6024.
  28. Debisarun, P.A.; Gössling, K.L.; Bulut, O.; Kilic, G.; Zoodsma, M.; Liu, Z.; Oldenburg, M.; Rüchel, N.; Zhang, B.; Xu, C.J.; et al. Induction of trained immunity by influenza vaccination—Impact on COVID-19. PLoS Pathog. 2021, 17, e1009928.
  29. Puro, V.; Castilletti, C.; Agrati, C.; Goletti, D.; Leone, S.; Agresta, A.; Cimini, E.; Tartaglia, E.; Casetti, R.; Colavita, F.; et al. Impact of prior influenza and pneumoccocal vaccines on humoral and cellular response to SARS-CoV-2 BNT162b2 vaccination. Vaccines 2021, 9, 615.
  30. Lazarus, R.; Baos, S.; Cappel-Porter, H.; Carson-Stevens, A.; Clout, M.; Culliford, L.; Emmett, S.R.; Garstang, J.; Gbadamoshi, L.; Hallis, B.; et al. Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): A multicentre, randomised, controlled, phase 4 trial. Lancet 2021, 398, 2277–2287.
  31. Toback, S.; Galiza, E.; Cosgrove, C.; Galloway, J.; Goodman, A.L.; Swift, P.A.; Rajaram, S.; Graves-Jones, A.; Edelman, J.; Burns, F.; et al. Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: An exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 10, 167–179.
  32. Izikson, R.; Brune, D.; Bolduc, J.S.; Bourron, P.; Fournier, M.; Moore, T.M.; Pandey, A.; Perez, L.; Sater, N.; Shrestha, A.; et al. Safety and immunogenicity of a high-dose quadrivalent influenza vaccine administered concomitantly with a third dose of the mRNA-1273 SARS-CoV-2 vaccine in adults aged ≥65 years: A phase 2, randomised, open-label study. Lancet Respir. Med. 2022. Available online: https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(21)00557-9/fulltext (accessed on 7 February 2022).
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 483
Revisions: 2 times (View History)
Update Date: 23 Mar 2022
1000/1000
Video Production Service