Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Ver. Summary Created by Modification Content Size Created at Operation
1 + 1583 word(s) 1583 2021-11-19 08:37:37 |
2 Done Meta information modification 1583 2021-11-29 02:36:28 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Kanno, Y. Fibrinolytic Regulators in Systemic Sclerosis. Encyclopedia. Available online: (accessed on 01 December 2023).
Kanno Y. Fibrinolytic Regulators in Systemic Sclerosis. Encyclopedia. Available at: Accessed December 01, 2023.
Kanno, Yosuke. "Fibrinolytic Regulators in Systemic Sclerosis" Encyclopedia, (accessed December 01, 2023).
Kanno, Y.(2021, November 26). Fibrinolytic Regulators in Systemic Sclerosis. In Encyclopedia.
Kanno, Yosuke. "Fibrinolytic Regulators in Systemic Sclerosis." Encyclopedia. Web. 26 November, 2021.
Fibrinolytic Regulators in Systemic Sclerosis

The regulators of fibrinolysis contain plasminogen (Plg) a proenzyme, which is converted to the active serine protease plasmin, a main component of the fibrinolytic system, through the action of a tissue-type plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR).

Fibrinolytic regulators SSc vascular dysfunction

1. Introduction

Systemic sclerosis (SSc) is an autoimmune rheumatic disease of unknown etiology that is characterized by vascular dysfunction and fibrosis of the skin and visceral organs as well as peripheral circulatory disturbance [1]. This process usually occurs over many months and years and can lead to organ dysfunction or death.
In SSc, vascular disorders are observed from early onset to the appearance of late complications and affect various organs, including the lungs, kidneys, heart, and digital arteries, and exacerbate the disease [2]. Microvascular disorders, such as Raynaud’s phenomenon, telangiectasias, and digital ulcers, frequently occur in SSc patients [2][3][4]. In contrast, macrovascular disorders, such as those of the coronary arteries, are rarely involved in SSc [2][5][6]. In SSc, the vascular dysfunction is caused by vascular and endothelial cell (EC) injury, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), vascular tone alteration, and coagulation abnormalities [7], and is associated with abnormalities in the immune system, such as T-cells, B-cells, mast cells, macrophages infiltration, immune activation, and auto-antibody production, as well as abnormalities in the extracellular matrix (ECM) metabolism, such as myofibroblast differentiation, ECM over-production, and the inhibition of ECM degradation. These abnormalities may influence each other and lead to the development of pulmonary arterial hypertension (PAH) and fibrosis [2]. However, the detailed mechanism underlying the relationship between “fibrosis” and “vascular dysfunction” remains unclear. It is reported that vasculopathy occurs in various mice, as urokinase-type plasminogen activator receptor (uPAR)-deficient mice develop EC apoptosis and severe loss of micro-vessels [8]. Caveolin-1-deficient mice show dilated cardiomyopathy and pulmonary hypertension [9]. Caveolin-1 is associated with the internalization and degradation of transforming growth factor-β (TGF-β) receptors and regulates TGF-β signaling [10]. Fli1-deficient mice show a disorganized dermal vascular network with greatly compromised vessel integrity and increased vessel permeability and impaired vascular homeostasis. Fli1 is associated with the expression of platelet/endothelial cell adhesion molecule (PECAM)-1, platelet derived growth factor (PDGF), and sphingosine-1-phosphate receptors (S1PR) [11]. Fos-related antigen-2 (Fra-2) transgenic mice develop microvascular and proliferative vasculopathy, and pulmonary vascular lesions resembling SSc-associated PAH [12]. However, while these factors may play a critical role in the onset of SSc-associated vascular disorders, the detailed mechanism underlying their involvement is unclear.

2. The Role of Fibrinolytic Regulators in Vascular and EC Injury in SSc

Vascular and EC injury is an early and initiating event in SSc. A number of factors (e.g., infections, cytotoxic T-cells, oxidative stress, auto-antibodies, ischemia-reperfusion) cause persistent EC activation and stimulate the production of various cytokines, EC apoptosis, impairment of cell-cell adhesion, and the activation of complement and coagulant pathways [13]. In addition, these factors also induce the production of vasodilators, such as nitric oxide (NO), vasoconstrictors, such as endothelin-1 (ET-1), and platelet activation, and lead to the impairment of vascular tone control and vascular and EC damage [2][13][14][15][16].
It is reported that Plg induces EC apoptosis [17]. Plasmin also damages the endothelial barrier function and EC integrity and induces EC injury [18]. Plasmin is known to regulate the vascular endothelial function and influence the progression of various cardiovascular diseases through fibrinolysis, the degradation of the ECM, and MMP and TGF-β activation [19][20]. Furthermore, plasmin regulates the fibrin-mediated EC spread and proliferation [21], MMP-mediated cell adhesion and cell migration [22], and TGF-β-induced EC apoptosis [23]. These direct and indirect effects of plasmin may be associated with the maintenance of the endothelial function. Conversely, uPA inhibits EC apoptosis through the induction of X-linked inhibitor of apoptosis protein [24]. uPAR is involved in the high-molecular-weight kininogen (HKa)-mediated apoptoic effect [25]. α2AP induces vascular damage, such as the reduction of blood vessels and blood flow in mice, and α2AP neutralization improves vascular damage in SSc model mice [26]. In addition, α2AP is associated with vascular remodeling and EC apoptosis [27]. PAI-1 reportedly induces EC apoptosis, but protects against FasL-mediated apoptosis [28][29]. Angiostatin regulates the inhibition of EC proliferation, EC migration, and tube formation, as well as the induction of EC apoptosis [30][31][32][33]. In SSc, the changes in the expression of the fibrinolytic regulators may regulate the endothelial function and dysfunction.

3. The Role of Fibrinolytic Regulators in Defective Angiogenesis in SSc

In SSc, angiogenesis is incomplete or lacking despite the increased expression of the pro-angiogenic factor VEGF [34]. VEGF plays a critical role in the maintenance of vascular functions, such as EC growth, activation, proliferation, and migration, through the VEGFR2 signal transduction pathways and also regulates angiogenesis [35]. The expression of VEGF is elevated in various cells, such as fibroblasts, ECs, and immune cells, but vascular insufficiency manifests in SSc [36][37]. The impairment of VEGF responses may cause vascular dysfunction in SSc, but the detailed mechanisms remain unclear.
Plasmin is known to regulate vascular endothelial functions and influence the progression of various cardiovascular diseases through fibrinolysis, the degradation of matrix proteins, and the activation of growth factors [19]. In addition, VEGF can be processed by plasmin and thereby released from the ECM [38][39]. α2AP attenuates the VEGF-induced pro-angiogenic effects, such as tube formation and EC proliferation, by blocking the VEGFR2 signal pathway in ECs [26]. In addition, α2AP is associated with VEGF production in fibroblasts and angiogenesis [40]. In SSc, fibroblasts are likely to be important effector cells. SSc fibroblasts inhibit angiogenesis and induce vascular dysfunction [1][26][41]. The blocking of α2AP markedly improves the SSc dermal fibroblast-induced vascular dysfunction, indicating that SSc fibroblast-derived α2AP affects vascular dysfunction in the disease [26]. An increased α2AP expression in SSc may cause impairment of the VEGF response and lead to vascular dysfunction. uPA and uPAR play important roles in angiogenesis and modulate the VEGF signaling [42][43]. uPA and uPAR are associated with the impairment of angiogenesis in SSc, and the SSc EC-conditioned medium attenuates uPA-dependent EC proliferation and invasion. In addition, the cleavage of uPAR by the overproduction of MMP-12 in SSc inhibits angiogenesis [41][44]. uPAR can interact with integrins, which mediate actin assembly in ECs and are associated with angiogenesis and vascular alterations in SSc [45][46][47]. uPAR also regulates VSMC proliferation and migration [48][49]. PAI-1 inhibits the binding of VEGFR-2 to β3 integrin as well as VEGF signaling [50]. In addition, PAI-1 binds to uPA and uPAR to exert anti-angiogenic effects [51]. tPA induces VEGF production through the ERK and p38 pathways in ECs [52].
Angiopoietins regulate vascular homeostasis through the Tie2 receptor [53][54][55]. Angiopoietin-1 (Ang-1) mediates vascular remodeling and stabilization, while angiopoietin-2 (Ang-2) functions as a Tie2 agonist or antagonist and is associated with angiogenesis and vascular permeability [54][56]. Ang-1 is decreased while Ang-2 is increased in the sera of patients with SSc and the differential expression of Ang-1/Ang-2 may be associated with the progression of SSc [57]. tPA regulates Ang-2 production [58], so an increase in tPA may induce an increase in Ang-2. In addition, α2AP inhibits the Ang-1-induced EC sprouting [59], and the suppression of uPA and uPAR inhibits Tie2 activation and attenuates angiogenesis [60]. Ang-1 or Tie2 can interact with integrins [61][62]. α2AP or uPA/uPAR-mediated Tie2 activation may be associated with the binding of integrins.
Angiostatin is known to be an anti-angiogenic factor that regulates EC proliferation, EC migration, EC apoptosis, and VEGF expression while inhibiting angiogenesis [30][31][32][63]. Angiostatin is generated by elastase [64]. MMP-12 is a macrophage elastase, and MMP-12 is elevated in SSc [41]. This increase in the MMP-12 expression may cause angiostatin overproduction, thereby leading to defective angiogenesis.

4. The Role of Fibrinolytic Regulators in Coagulation Abnormalities in SSc

Microvascular thrombosis and fibrin deposition were observed in patients with SSc, and an imbalance in coagulation and fibrinolysis causes vascular damage [2][14][65]. The levels of von Willebrand factor (vWF), fibrinogen, ET-1, sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are elevated in SSc [2][14]. In addition, a specific nonintegrin receptor for type I collagen was found to be elevated in platelets obtained from SSc patients, and an increased responsiveness of SSc platelets to 5-hydroxytryptamine (5HT), adrenaline, ADP, and collagen were reported [66][67]. Those increases may cause the activation of platelets and hypercoagulation. Furthermore, plasmin induces platelet activation, platelet aggregation, and platelet release reaction through PAR [68][69][70]. Plasmin also enhances their sensitivity to ADP [70]. In SSc, increases in the levels of uPA and tPA may promote plasmin generation and the activation of platelets, which synthesize and release α2AP and PAI-1 [71][72].
The expression of α2AP and PAI-1 [73][74] and uPAR cleavage by MMP-12 overexpression [41] is elevated in SSc. Furthermore, α2AP can be crosslinked to the fibrin surface by activated FXIIIa [75], and PAI-1 binds to fibrin through Vn [76]. The inactivation of plasmin by increases in the expression of α2AP and PAI-1 may cause the impairment of fibrinolysis. In addition, Barrett et al. suggest that the angiostatin generation induced by elastase-degraded Plg may underlie the fibrinolytic shutdown [77]. These changes in fibrinolytic regulators may cause the impairment of fibrinolysis and lead to the deposition of fibrin and coagulation abnormalities characteristic of SSc.

5. The Role of Fibrinolytic Regulators in Vascular Tone Alteration in SSc

In SSc, it has been reported that the eNOS expression and NO release are decreased, and the impairment of NO response attenuates vasodilation [14]. Conversely, vasoconstrictors, such as ET-1, are elevated in SSc and cause abnormal vasoconstriction [14]. These changes in the vascular tone in SSc may lead to vascular damage. tPA, PAI-1, and plasmin inhibitor have been reported to modulate vasodilation and vasoconstriction and regulate the vascular tone [78][79]. In addition, PAI-1 deficiency prevents hypertension in response to long-term NOS inhibition [80], and uPA promotes the LRP-mediated eNOS activation [81]. Furthermore, angiostatin inhibits the VEGF-induced NO production and is involved in vasodilation [82][83]. The fibrinolytic system may be involved in the vascular tone alterations observed in SSc.


  1. Gilbane, A.J.; Denton, C.P.; Holmes, A.M. Scleroderma pathogenesis: A pivotal role for fibroblasts as effector cells. Arthritis Res. Ther. 2013, 15, 215.
  2. Kavian, N.; Batteux, F. Macro- and microvascular disease in systemic sclerosis. Vascul. Pharmacol. 2015, 71, 16–23.
  3. Block, J.A.; Sequeira, W. Raynaud’s phenomenon. Lancet 2001, 357, 2042–2048.
  4. Walker, J.G.; Stirling, J.; Beroukas, D.; Dharmapatni, K.; Haynes, D.R.; Smith, M.D.; Ahern, M.J.; Roberts-Thomson, P.J. Histopathological and ultrastructural features of dermal telangiectasias in systemic sclerosis. Pathology 2005, 37, 220–225.
  5. Bulkley, B.H.; Ridolfi, R.L.; Salyer, W.R.; Hutchins, G.M. Myocardial lesions of progressive systemic sclerosis. A cause of cardiac dysfunction. Circulation 1976, 53, 483–490.
  6. Akram, M.R.; Handler, C.E.; Williams, M.; Carulli, M.T.; Andron, M.; Black, C.M.; Denton, C.P.; Coghlan, J.G. Angiographically proven coronary artery disease in scleroderma. Rheumatology 2006, 45, 1395–1398.
  7. Mostmans, Y.; Cutolo, M.; Giddelo, C.; Decuman, S.; Melsens, K.; Declercq, H.; Vandecasteele, E.; De Keyser, F.; Distler, O.; Gutermuth, J.; et al. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun. Rev. 2017, 16, 774–786.
  8. Manetti, M.; Rosa, I.; Milia, A.F.; Guiducci, S.; Carmeliet, P.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: A new model of experimental scleroderma? Ann. Rheum. Dis. 2014, 73, 1700–1709.
  9. Zhao, Y.Y.; Liu, Y.; Stan, R.V.; Fan, L.; Gu, Y.; Dalton, N.; Chu, P.H.; Peterson, K.; Ross, J., Jr.; Chien, K.R. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. USA 2002, 99, 11375–11380.
  10. Di Guglielmo, G.M.; Le Roy, C.; Goodfellow, A.F.; Wrana, J.L. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat. Cell Biol. 2003, 5, 410–421.
  11. Asano, Y.; Stawski, L.; Hant, F.; Highland, K.; Silver, R.; Szalai, G.; Watson, D.K.; Trojanowska, M. Endothelial Fli1 deficiency impairs vascular homeostasis: A role in scleroderma vasculopathy. Am. J. Pathol. 2010, 176, 1983–1998.
  12. Maurer, B.; Distler, J.H.; Distler, O. The Fra-2 transgenic mouse model of systemic sclerosis. Vascul. Pharmacol. 2013, 58, 194–201.
  13. Manetti, M.; Guiducci, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Mechanisms in the loss of capillaries in systemic sclerosis: Angiogenesis versus vasculogenesis. J. Cell. Mol. Med. 2010, 14, 1241–1254.
  14. Pattanaik, D.; Brown, M.; Postlethwaite, B.C.; Postlethwaite, A.E. Pathogenesis of Systemic Sclerosis. Front. Immunol. 2015, 6, 272.
  15. Greeno, E.W.; Bach, R.R.; Moldow, C.F. Apoptosis is associated with increased cell surface tissue factor procoagulant activity. Lab. Investig. 1996, 75, 281–289.
  16. Tsuji, S.; Kaji, K.; Nagasawa, S. Activation of the alternative pathway of human complement by apoptotic human umbilical vein endothelial cells. J. Biochem. 1994, 116, 794–800.
  17. Li, L.; Yao, Y.C.; Gu, X.Q.; Che, D.; Ma, C.Q.; Dai, Z.Y.; Li, C.; Zhou, T.; Cai, W.B.; Yang, Z.H.; et al. Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J. Biol. Chem. 2014, 289, 32628–32638.
  18. Okajima, K.; Abe, H.; Binder, B.R. Endothelial cell injury induced by plasmin in vitro. J. Lab. Clin. Med. 1995, 126, 377–384.
  19. Plow, E.F.; Hoover-Plow, J. The functions of plasminogen in cardiovascular disease. Trends Cardiovasc. Med. 2004, 14, 180–186.
  20. Lyons, R.M.; Gentry, L.E.; Purchio, A.F.; Moses, H.L. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J. Cell Biol. 1990, 110, 1361–1367.
  21. Mosesson, M.W. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 2005, 3, 1894–1904.
  22. Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 2005, 9, 267–285.
  23. Yan, Q.; Sage, E.H. Transforming growth factor-beta1 induces apoptotic cell death in cultured retinal endothelial cells but not pericytes: Association with decreased expression of p21waf1/cip1. J. Cell. Biochem. 1998, 70, 70–83.
  24. Prager, G.W.; Mihaly, J.; Brunner, P.M.; Koshelnick, Y.; Hoyer-Hansen, G.; Binder, B.R. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein. Blood 2009, 113, 1383–1390.
  25. Cao, D.J.; Guo, Y.L.; Colman, R.W. Urokinase-type plasminogen activator receptor is involved in mediating the apoptotic effect of cleaved high molecular weight kininogen in human endothelial cells. Circ. Res. 2004, 94, 1227–1234.
  26. Kanno, Y.; Shu, E.; Kanoh, H.; Matsuda, A.; Seishima, M. α2AP regulates vascular alteration by inhibiting VEGF signaling in systemic sclerosis: The roles of α2AP in vascular dysfunction in systemic sclerosis. Arthritis Res. Ther. 2017, 19, 22.
  27. Hou, Y.; Okada, K.; Okamoto, C.; Ueshima, S.; Matsuo, O. Alpha2-antiplasmin is a critical regulator of angiotensin II-mediated vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1257–1262.
  28. Al-Fakhri, N.; Chavakis, T.; Schmidt-Wöll, T.; Huang, B.; Cherian, S.M.; Bobryshev, Y.V.; Lord, R.S.; Katz, N.; Preissner, K.T. Induction of apoptosis in vascular cells by plasminogen activator inhibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties. Biol. Chem. 2003, 384, 423–435.
  29. Bajou, K.; Peng, H.; Laug, W.E.; Maillard, C.; Noel, A.; Foidart, J.M.; Martial, J.A.; DeClerck, Y.A. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 2008, 14, 324–334.
  30. Griscelli, F.; Li, H.; Bennaceur-Griscelli, A.; Soria, J.; Opolon, P.; Soria, C.; Perricaudet, M.; Yeh, P.; Lu, H. Angiostatin gene transfer: Inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc. Natl. Acad. Sci. USA 1998, 95, 6367–6372.
  31. Troyanovsky, B.; Levchenko, T.; Månsson, G.; Matvijenko, O.; Holmgren, L. Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell Biol. 2001, 152, 1247–1254.
  32. Hajitou, A.; Grignet, C.; Devy, L.; Berndt, S.; Blacher, S.; Deroanne, C.F.; Bajou, K.; Fong, T.; Chiang, Y.; Foidart, J.M.; et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB J. 2002, 16, 1802–1804.
  33. Lucas, R.; Holmgren, L.; Garcia, I.; Jimenez, B.; Mandriota, S.J.; Borlat, F.; Sim, B.K.; Wu, Z.; Grau, G.E.; Shing, Y.; et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 1998, 92, 4730–4741.
  34. Guiducci, S.; Distler, O.; Distler, J.H.; Matucci-Cerinic, M. Mechanisms of vascular damage in SSc-implications for vascular treatment strategies. Rheumatology 2008, 47, v18–v20.
  35. Shibuya, M.; Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 2006, 312, 549–560.
  36. Liakouli, V.; Cipriani, P.; Marrelli, A.; Alvaro, S.; Ruscitti, P.; Giacomelli, R. Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun. Rev. 2011, 10, 590–594.
  37. Trojanowska, M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nat. Rev. Rheumatol. 2010, 6, 453–460.
  38. Houck, K.A.; Leung, D.W.; Rowland, A.M.; Winer, J.; Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 1992, 267, 26031–26037.
  39. Park, J.E.; Keller, G.-A.; Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 1993, 4, 1317–1326.
  40. Kanno, Y.; Hirade, K.; Ishisaki, A.; Nakajima, K.; Suga, H.; Into, T.; Matsushita, K.; Okada, K.; Matsuo, O.; Matsuno, H. Lack of alpha2-antiplasmin improves cutaneous wound healing via over-released vascular endothelial growth factor-induced angiogenesis in wound lesions. J. Thromb. Haemost. 2006, 4, 1602–1610.
  41. Serratì, S.; Cinelli, M.; Margheri, F.; Guiducci, S.; Del Rosso, A.; Pucci, M.; Fibbi, G.; Bazzichi, L.; Bombardieri, S.; Matucci-Cerinic, M.; et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J. Pathol. 2006, 210, 240–248.
  42. Montuori, N.; Ragno, P. Role of uPA/uPAR in the modulation of angiogenesis. Chem. Immunol. Allergy 2014, 99, 105–122.
  43. Uhrin, P.; Breuss, JM. uPAR: A modulator of VEGF-induced angiogenesis. Cell Adh. Migr. 2013, 7, 23.
  44. D’Alessio, S.; Fibbi, G.; Cinelli, M.; Guiducci, S.; Del Rosso, A.; Margheri, F.; Serrati, S.; Pucci, M.; Kahaleh, B.; Fan, P.; et al. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004, 50, 3275–3285.
  45. Margheri, F.; Manetti, M.; Serrati, S.; Nosi, D.; Pucci, M.; Matucci-Cerinic, M.; Kahaleh, B.; Bazzichi, L.; Fibbi, G.; Ibba-Manneschi, L.; et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, beta2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: Failure of association in systemic sclerosis endothelial cells. Arthritis Rheum. 2006, 54, 3926–3938.
  46. Bagnato, G.L.; Irrera, N.; Pizzino, G.; Santoro, D.; Roberts, W.N.; Bagnato, G.; Pallio, G.; Vaccaro, M.; Squadrito, F.; Saitta, A.; et al. Dual αvβ3 and αvβ5 blockade attenuates fibrotic and vascular alterations in a murine model of systemic sclerosis. Clin. Sci. 2018, 132, 231–242.
  47. Giusti, B.; Margheri, F.; Rossi, L.; Lapini, I.; Magi, A.; Serratì, S.; Chillà, A.; Laurenzana, A.; Magnelli, L.; Calorini, L.; et al. Desmoglein-2-integrin Beta-8 interaction regulates actin assembly in endothelial cells: Deregulation in systemic sclerosis. PLoS ONE 2013, 8, e68117.
  48. Kanno, Y.; Kuroki, A.; Minamida, M.; Kaneiwa, A.; Okada, K.; Tomogane, K.; Takeuchi, K.; Ueshima, S.; Matsuo, O.; Matsuno, H. The absence of uPAR attenuates insulin-induced vascular smooth muscle cell migration and proliferation. Thromb. Res. 2008, 123, 336–341.
  49. Kiyan, J.; Kiyan, R.; Haller, H.; Dumler, I. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-beta. EMBO J. 2005, 24, 1787–1797.
  50. Wu, J.; Strawn, T.L.; Luo, M.; Wang, L.; Li, R.; Ren, M.; Xia, J.; Zhang, Z.; Ma, W.; Luo, T.; et al. Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-αVβ3 integrin cross talk. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 111–120.
  51. Bajou, K.; Herkenne, S.; Thijssen, V.L.; D’Amico, S.; Nguyen, N.Q.; Bouché, A.; Tabruyn, S.; Srahna, M.; Carabin, J.Y.; Nivelles, O.; et al. PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat. Med. 2014, 20, 741–747.
  52. Duan, P.; Ni, C. t-PA stimulates VEGF expression in endothelial cells via ERK2/p38 signaling pathways. Pharmazie 2014, 69, 70–75.
  53. Fukuhara, S.; Sako, K.; Noda, K.; Zhang, J.; Minami, M.; Mochizuki, N. Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol. Histopathol. 2010, 25, 387–396.
  54. Augustin, H.G.; Koh, G.Y.; Thurston, G.; Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 2009, 10, 165–177.
  55. Thurston, G.; Rudge, J.S.; Ioffe, E.; Zhou, H.; Ross, L.; Croll, S.D.; Glazer, N.; Holash, J.; McDonald, D.M.; Yancopoulos, G.D. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 2000, 6, 460–463.
  56. Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegand, S.J.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Papadopoulos, N.; et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997, 277, 55–60.
  57. Michalska-Jakubus, M.; Kowal-Bielecka, O.; Chodorowska, G.; Bielecki, M.; Krasowska, D. Angiopoietins-1 and -2 are differentially expressed in the sera of patients with systemic sclerosis: High angiopoietin-2 levels are associated with greater severity and higher activity of the disease. Rheumatology 2011, 50, 746–755.
  58. Mishiro, K.; Ishiguro, M.; Suzuki, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. Tissue plasminogen activator prevents restoration of tight junction proteins through upregulation of angiopoietin-2. Curr. Neurovasc. Res. 2013, 10, 39–48.
  59. Kim, I.; Kim, H.G.; Moon, S.O.; Chae, S.W.; So, J.N.; Koh, K.N.; Ahn, B.C.; Koh, G.Y. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ. Res. 2000, 86, 952–959.
  60. Raghu, H.; Lakka, S.S.; Gondi, C.S.; Mohanam, S.; Dinh, D.H.; Gujrati, M.; Rao, J.S. Suppression of uPA and uPAR attenuates angiogenin mediated angiogenesis in endothelial and glioblastoma cell lines. PLoS ONE 2010, 5, e12458.
  61. Dallabrida, S.M.; Ismail, N.S.; Pravda, E.A.; Parodi, E.M.; Dickie, R.; Durand, E.M.; Lai, J.; Cassiola, F.; Rogers, R.A.; Rupnick, M.A. Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. FASEB J. 2008, 22, 3010–3023.
  62. Cascone, I.; Napione, L.; Maniero, F.; Serini, G.; Bussolino, F. Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J. Cell Biol. 2005, 170, 993–1004.
  63. Lee, T.Y.; Muschal, S.; Pravda, E.A.; Folkman, J.; Abdollahi, A.; Javaherian, K. Angiostatin regulates the expression of antiangiogenic and proapoptotic pathways via targeted inhibition of mitochondrial proteins. Blood 2009, 114, 1987–1998.
  64. Farnoodian, M.; Wang, S.; Dietz, J.; Nickells, R.W.; Sorenson, C.M.; Sheibani, N. Negative regulators of angiogenesis: Important targets for treatment of exudative AMD. Clin. Sci. 2017, 131, 1763–1780.
  65. Matucci Cerinic, M.M.; Valentini, G.; Sorano, G.G.; D’Angelo, S.; Cuomo, G.; Fenu, L.; Generini, S.; Cinotti, S.; Morfini, M.; Pignone, A.; et al. Blood coagulation, fibrinolysis, and markers of endothelial dysfunction in systemic sclerosis. Semin. Arthritis Rheum. 2003, 32, 285–295.
  66. Chiang, T.M.; Takayama, H.; Postlethwaite, A.E. Increase in platelet non-integrin type I collagen receptor in patients with systemic sclerosis. Thromb. Res. 2006, 117, 299–306.
  67. Ramirez, G.A.; Franchini, S.; Rovere-Querini, P.; Sabbadini, M.G.; Manfredi, A.A.; Maugeri, N. The role of platelets in the pathogenesis of systemic sclerosis. Front. Immunol. 2012, 3, 160.
  68. Quinton, T.M.; Kim, S.; Derian, C.K.; Jin, J.; Kunapuli, S.P. Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J. Biol. Chem. 2004, 279, 18434–18439.
  69. Watabe, A.; Ohta, M.; Matsuyama, N.; Mizuno, K.; el Borai, N.; Tanimoto, T.; Kawanishi, T.; Hayakawa, T. Characterization of plasmin-induced platelet aggregation. Res. Commun. Mol. Pathol. Pharmacol. 1997, 96, 341–352.
  70. Niewiarowski, S.; Senyi, A.F.; Gillies, P. Plasmin-induced platelet aggregation and platelet release reaction. Effects on hemostasis. J. Clin. Investig. 1973, 52, 1647–1659.
  71. Brogren, H.; Karlsson, L.; Andersson, M.; Wang, L.; Erlinge, D.; Jern, S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004, 104, 3943–3948.
  72. Plow, E.F.; Collen, D. The presence and release of alpha 2-antiplasmin from human platelets. Blood 1981, 58, 1069–1074.
  73. Kanno, Y.; Shu, E.; Kanoh, H.; Seishima, M. The Antifibrotic Effect of α2AP Neutralization in Systemic Sclerosis Dermal Fibroblasts and Mouse Models of Systemic Sclerosis. J. Investig. Dermatol. 2016, 136, 762–769.
  74. Lemaire, R.; Burwell, T.; Sun, H.; Delaney, T.; Bakken, J.; Cheng, L.; Rebelatto, M.C.; Czapiga, M.; de-Mendez, I.; Coyle, A.J.; et al. Resolution of Skin Fibrosis by Neutralization of the Antifibrinolytic Function of Plasminogen Activator Inhibitor 1. Arthritis Rheumatol. 2016, 68, 473–483.
  75. Abdul, S.; Leebeek, F.W.; Rijken, D.C.; Uitte de Willige, S. Natural heterogeneity of α2-antiplasmin: Functional and clinical consequences. Blood 2016, 127, 538–545.
  76. Podor, T.J.; Peterson, C.B.; Lawrence, D.A.; Stefansson, S.; Shaughnessy, S.G.; Foulon, D.M.; Butcher, M.; Weitz, J.I. Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin. J. Biol. Chem. 2000, 275, 19788–19794.
  77. Barrett, C.D.; Moore, H.B.; Banerjee, A.; Silliman, C.C.; Moore, E.E.; Yaffe, M.B. Human neutrophil elastase mediates fibrinolysis shutdown through competitive degradation of plasminogen and generation of angiostatin. J. Trauma Acute Care Surg. 2017, 83, 1053–1061.
  78. Heyman, S.N.; Hanna, Z.; Nassar, T.; Shina, A.; Akkawi, S.; Goldfarb, M.; Rosen, S.; Higazi, A.A. The fibrinolytic system attenuates vascular tone: Effects of tissue plasminogen activator (tPA) and aminocaproic acid on renal microcirculation. Br. J. Pharmacol. 2004, 141, 971–978.
  79. Nassar, T.; Akkawi, S.; Shina, A.; Haj-Yehia, A.; Bdeir, K.; Tarshis, M.; Heyman, S.N.; Higazi, AA. In vitro and in vivo effects of tPA and PAI-1 on blood vessel tone. Blood 2004, 103, 897–902.
  80. Kaikita, K.; Fogo, A.B.; Ma, L.; Schoenhard, J.A.; Brown, N.J.; Vaughan, D.E. Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation 2001, 104, 839–844.
  81. Makarova, A.M.; Lebedeva, T.V.; Nassar, T.; Higazi, A.A.; Xue, J.; Carinato, M.E.; Bdeir, K.; Cines, D.B.; Stepanova, V. Urokinase-type plasminogen activator (uPA) induces pulmonary microvascular endothelial permeability through low density lipoprotein receptor-related protein (LRP)-dependent activation of endothelial nitric-oxide synthase. J. Biol. Chem. 2011, 286, 23044–23053.
  82. Takahashi, S.; Shinya, T.; Sugiyama, A. Angiostatin inhibition of vascular endothelial growth factor-stimulated nitric oxide production in endothelial cells. J. Pharmacol. Sci. 2010, 112, 432–437.
  83. Koshida, R.; Ou, J.; Matsunaga, T.; Chilian, W.M.; Oldham, K.T.; Ackerman, A.W.; Pritchard, K.A., Jr. Angiostatin: A negative regulator of endothelial-dependent vasodilation. Circulation 2003, 107, 803–806.
Subjects: Cell Biology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 191
Revisions: 2 times (View History)
Update Date: 29 Nov 2021