2.1. Sex Differences in the Epidemiology and Clinical Outcomes of VCI
Cerebrovascular disease (CVD), the second-most common cause of cognitive impairment (CI) and dementia, frequently contributes to cognitive decline in neurodegenerative dementia. VCI is associated with vascular disorders that may coexist with neurodegeneration
[13][14][15] and includes milder forms of CI and vascular dementia (VaD). Many patients with CVD develop several cognitive disabilities. Some studies suggested that male sex is a risk factor for CI
[16][17]; others found that female sex is predictive of the increased risk of CI
[18][19]. Although dementia disproportionally affects females, there are conflicting findings on the influence of sex on the incidence and prevalence of VCI
[20]. Sex-related differences in risk factors, cognitive profiles, rates of deterioration, pathogenesis, and outcomes remain unknown. Evidence has revealed a sex-specific pattern in the incidence of CVD, with women having lower incidence rates of both ischemic stroke and intracerebral hemorrhage (ICH) than men
[21]. Among 860 patients with CVD, significantly more women than men had poor cognitive performance (approximately 15% difference)
[20]. Despite the similar incidence of VCI between women and men
[20], women tend to experience more severe strokes
[22], whereas men frequently experience their first stroke earlier
[22]. Risk factors for CVD such as AF, HF, myocardial infarction, high blood pressure, hyperlipidemia, obesity, and diabetes mellitus (DM) are more common among men
[23][24][25]; however, the incidence rates of dementia associated with these risk factors are conflicting
[23][24]. Some studies reported no significant difference in the risk for VCI between men and women
[26][27][28], whereas others suggested that men had significantly higher incidences of VCI
[29][30][31]. Studies have found that women experience poorer functional and cognitive decline after stroke than men
[32][33][34]. Women had a greater risk for dementia among individuals with DM
[24]. In a meta-analysis, sex differences in the prevalence of VCI were associated with age: VCI was more prevalent among men aged <79 but was more prevalent among women aged >85
[35].
Sex differences in the efficacy of stroke treatment have also been reported. Aspirin was found to be more effective in preventing stroke in women than in men
[36], whereas warfarin was more effective for AF in men than in women
[37]. Considering that therapeutic efficacy against stroke is implicated in the prognosis of VCI, the influence of sex differences is crucial in the clinical outcome of VCI. Sex differences also influence the efficacy of nonpharmacological interventions against VCI
[38]. Thus, sex differences in the efficacy of stroke treatment should be determined.
As women tend to experience more severe stroke than men, they would have a higher incidence of VCI than men
[39]. Within the first 3 weeks, the most important predictor of long-term functional outcome in patients with stroke is memory, which is associated with the medial temporal lobe (MTL) volume
[40]. As men reportedly have larger MTLs than women
[41], sex differences might affect the prognosis of VCI considering their influence on brain morphology. However, executive function was found to be a predictor of functional outcome and is associated with prefrontal volume
[42]. The results regarding the influence of cognitive sex differences on VCI prognosis are inconsistent. Thus, the modulating effect of sex differences on the relationship between cortical volume and VCI prognosis remains unclear. Patients with VCI exhibiting memory, visuospatial, and executive impairments show significantly poorer global cognitive function, as assessed using the Mini-Mental State Examination (MMSE)
[43]. Executive dysfunction, which can be measured using the Trail-Making Test A, was demonstrated to be a predictor of the modified Barthel index in patients with VCI
[43].
Acetylcholinesterase inhibitors (AChEIs) can improve cognitive function in patients with VCI
[44]. Cholinergic augmentation led to significant improvements in MMSE scores after 4 weeks in patients with post-stroke CI and VCI
[44]. The neural system and cholinergic pathways, which comprise the basal forebrain, substantia innominata, striatum, cerebral cortex, some brainstem nuclei, and spinal motor neurons
[45], are vulnerable to vascular damage, which can cause CI. It has been suggested that AChEIs modulate CI by compensating for the lack of intracerebral cholinergic neurotransmitters by inhibiting acetylcholine hydrolysis. This has been considered an effective treatment pathway in patients with post-stroke CI and VaD
[46]. Sex differences in pharmacological effects have been associated with higher sensitivity to the toxic effects of organophosphate cholinesterase inhibitors in males
[47]. Therefore, older males and females might respond differently to AChEIs because of either sex-specific differences in the structure and function of the cholinergic system, pharmacokinetics, memory function, or the effects of aging or AD on such processes
[47].