Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Ver. Summary Created by Modification Content Size Created at Operation
1 + 2337 word(s) 2337 2021-06-09 08:12:51 |
2 format correction Meta information modification 2337 2021-06-17 05:05:47 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Marin-Muñiz, J.L. Macrophytes in Constructed wetlands. Encyclopedia. Available online: (accessed on 07 December 2023).
Marin-Muñiz JL. Macrophytes in Constructed wetlands. Encyclopedia. Available at: Accessed December 07, 2023.
Marin-Muñiz, José Luis. "Macrophytes in Constructed wetlands" Encyclopedia, (accessed December 07, 2023).
Marin-Muñiz, J.L.(2021, June 16). Macrophytes in Constructed wetlands. In Encyclopedia.
Marin-Muñiz, José Luis. "Macrophytes in Constructed wetlands." Encyclopedia. Web. 16 June, 2021.
Macrophytes in Constructed wetlands

The vegetation in constructed wetlands (CWs) plays an important role in wastewater treatment. Popularly, the common emergent plants in CWs have been vegetation of natural wetlands. However, there are ornamental flowering plants that have some physiological characteristics similar to the plants of natural wetlands that can stimulate the removal of pollutants in wastewater treatments.

ornamental flowering plants constructed wetlands wastewater pollutants

1. Introduction

Nowadays, the use of constructed wetlands (CWs) for wastewater treatment is an option widely recognized. This sustainable ecotechnology is based on natural wetland processes for the removal of contaminants, including physical, chemical and biological routes, but in a more controlled environment compared with natural ecosystems [1][2][3]. These ecologically engineered systems involve three important components: porous-filter media, microorganism and vegetation [2]. The mechanisms for the transformation of nutrient and organic matter compounds are conducted by biofilms of microorganisms formed in the porous media and the rhizosphere zone [4][5]. The media materials (soil, sand, rocks, and gravel) provide a huge surface area for microorganisms to attach, contributing to macrophyte growth, and also act as filtration and/or adsorption medium for contaminants present in the water [6]. Regarding the vegetation, one of the most conspicuous features of wetlands is the role that plants play in the production of root and rhizomes in order to provide substrates for attached bacteria and oxygenation of areas adjacent to the root, and absorb pollutants from water. Nitrogen (N), Phosphorus (P) and other nutrients are mainly taken up by wetland plants through the epidermis and vascular bundles of the roots, and are further transported upward to the stem and leaves [7]. This provides carbon for denitrification during biomass decomposition and prevents pollutants from being released from sediments [8][9][10]. The use of the CW technology began in Europe during the 1960s [1], and has been replicated on other continents. The type of vegetation used are plants from natural wetlands, including Cyperus papyrus, Phragmites australis, Typha and Scirpus spp., which have been evaluated for their positive effects on treatment efficiency for nutrient and organic compounds around the globe [8][9][11]. In Americas, such species are typical in CWs, and are found mainly in the United States, where the technology has been used extensively and is implemented in different rural and urban zones [12][13][14][15][16]. In recent studies (15 years ago), the goal of CW studies involved an investigation into the use of herbaceous perennial ornamental plants in CWs, including the use of species with different colored flowers to make the systems more esthetic, and therefore making it more probable for adoption and replication.

2. Role of Macrophytes in CWs

The plants that grow in constructed wetlands have several properties related to the water treatment process that make them an essential component of the design. Macrophytes are the main source of oxygen in CWs through a process that occurs in the root zone, called radial oxygen loss (ROL) [17]. The ROL contributes to the removal of pollutants because it favors an aerobic micro-environment, and waste removal is therefore accelerated, whereas, in anaerobic conditions (the main environment in CWs), there is less pollutant removal. In a recent study [18] comparing the use of plants in high density (32 plants m−2) and low density (16 plants m−2) CWs, the removal of nitrogen compounds in high density CWs was twice that of CWs using a low density of plants, which is strong evidence of the importance of plants in such systems. The removal rate of total nitrogen (TN) and total phosphorous (TP) were also positively correlated with the ROL of wetland plants, according to a study involving 35 different species [19].
The roots of plants are the site of many microorganisms because they provide a source of microbial attachment [8] and release exudates, an excretion of carbon that contributes to the denitrification process, which increases the removal of pollutants in anoxic conditions [20][21]. Other physical effects in plant tissue in water include: reduction in the velocity of water flow, promotion of sedimentation, decreased resuspension, and uptake of nutrients. However, for roots and rhizomes in the sediment, the physical effects include: stabilizing the sediment surface, less erosion, nutrient absorption, prevention of medium clogging (in subsurface conditions) and improved hydraulic conductivity. Aerial plant tissue favors in the light attenuation (reduced growth of photosynthesis), reduced wind velocity, storage of nutrients and aesthetic pleasing appearance of the system [2][5]. A 5-year study evaluated the influence of vegetation on sedimentation and resuspension of soil particles in small CWs [22]. The author showed that macrophytes stimulated sediment retention by mitigating the resuspension of the CW sediment (14 to 121 kg m−2). Macrophytes increased the hydraulic efficiency by reducing short-circuit or preferential flow. Plant presence led to decreasing saturated hydraulic conductivity in horizontal subsurface flow. This study was relevant, since monitoring macrophytes is essential for understanding and controlling clogging in subsurface CWs [22].
The removal of organic and inorganic pollutants in CWs is not only the role of microorganisms. This function is also exerted by plants that are able to tolerate high concentrations of nutrients and heavy metals, and, in some cases, plants are able to accumulate them in their tissues [23]. It has been estimated that between 15 and 32 mg g−1 of TN and 2–6 mg g−1 (dry mass) of TP are removed by CW plants, which was measured in the aboveground biomass [24][25].
Other uptakes of xenobiotic compounds (organic pollutants) are also the result of the presence of plants, involving processes such as transformation, conjugation and compartmentation [23].

3. Survey Results of the Use of Ornamental Flowering Plants in CWs

Many CWs around the world used OFP for the removal of various types of wastewater (Table 1). For example, in China, the most popular plants used is Canna sp., while in Mexico the ornamental plant used is more diverse, including plants with flowers of different colors, shapes and aromatic characteristics (Canna, Heliconia, Zantedeschia, Strelitzia spp).
Table 1. Ornamental flowering plants and removal of wastewater pollutants in CWs (constructed wetlands) around the globe.


Type of Wastewater


Removal Efficiency of Pollutants (%)




Heliconia psittacorum

TSS: 88, COD: 95, BOD: 95

Paulo et al. [26]



Alpinia purpurataArundina bambusifoliaCanna spp.

Heliconia psittacorum L.F.

COD: 48-90, PO4-P: 20, TKN: 31 and TSS: 34.

Paulo et al. [27]



Hedychium coronarium

Heliconia rostrata

COD: 59, TP: 44, TKN: 34 and NHx 35

COD: 57, TP: 38, TKN: 34 and NHx: 37

Sarmento et al. [28]


Hemerocallis flava

COD: 72, BOD: 90, TN: 52, TP: 41 and SST: 72.

Prata et al. [29]


Heliconia psittacorum L.F.


Teodoro et al. [30]



Canna indica

COD: 77, BOD: 86, TP: >82, TN: >45

Shi et al. [31]


Aquaculture ponds

Canna indica mixed with other species

BOD: 71, TSS: 82, chlorophyll-a: 91.9, NH4-N: 62, NO3-N: 68 and TP: 20.

Li et al. [32]



Canna indica Linn

COD: 82.31, BOD: 88.6, TP: >80, TN: >85

Yang et al. [33]



Canna indica

NH4-N: 99, PO4-P: 87

Zhang et al. [34]


Drain of some factories

R. carnea, I. pseudacorus, L. salicaria

COD: 58-92, BOD: 60-90

TN: 60-92, TP: 50-97,

Zhang et al. [35]



Canna sp

COD: 95, N-NH4: 100, N-NO3: 76, TN: 72

Sun et al. [36]



Canna indica

TP: 60, NH4-N: 30-70, TN: ~25

Cui et al. [37]


Aquaculture ponds

Canna indica mixed with other natural wetland plants

BOD: 56, COD: 26, TSS: 58, TP: 17, TN: 48 and NH4-N: 34.

Zhang et al. [38]


Wastewater from a student dormitory (University)

Canna indica mixed with other natural wetland plants

COD: 50–70, BOD: 60–80, N-NO3: 65–75, TP: 50–80

Qiu et al. [39]



Canna indica and Hedychium coronarium

TP: 40–70

Wen et al. [40]


Polluted river

Iris pseudacorus mixed with other natural wetland plants

TN: 68, NH4-N: 93, TP: 67

Wu et al. [41]



Iris pseudacorus, mixed with other plants of natural wetlands

TN: 20 and TP: 44

Xie et al. [42]



Canna indica

COD: 60, NO3-N: 80, TN: 15, TP: 52

Chang et al. [43]


Simulated polluted river water

Iris sibirica

COD: 22, TN: 46, NH4-N: 62, TP: 58

Gao et al. [44]



Canna sp

Fluoride: 51, Arsenic: 95

Li et al. [45]


Simulated polluted river water

Iris sibirica

Cd: 92

Gao et al. [46]



Canna indica L.

N: 56–60

Hu et al. [47]


Synthetic (hydrophonic sol.)

Canna indica L.

TN: 40–60, N-NO3: 20–95, NH4-N: 20–55

Wang et al. [48]



Zantedeschia aethiopica, Canna spp. and Iris spp

BOD: 82, TN: 53, TP: 60.

Morales et al. [49]



Tulbaghia violácea, and Iris pseudacorus.

BOD: 57–88, COD: 45–72, TSS: 70–93, PO4-P: 6–20.

Burgos et al. [50]


Ww rural community

Zantedeschia aethiopica

Organic matter: 60%, TSS: 90%

Leyva et al. [51]



Heliconia psíttacorum

NH3: 57

COD: 70

Gutiérrez-Mosquera and Peña-Varón [52]


Synthetic landfill leachate

Heliconia psittacorum

COD, TKN and NH4 (all: 65–75)

Madera-Parra et al. [53]


Cattle bath

Alpinia purpurata

SST: 58, TP: 85, COD: 63

Marrugo-Negrete et al. [54]



Heliconia psitacorum

Bisphenol A: 73, Nonylphenols: 63

Toro-Vélez et al. [55]

Costa Rica

Dairy raw manure

Ludwigia inucta, Zantedechia aetiopica, Hedychium coronarium and Canna generalis

BOD: 62, NO3-N: 93, PO4-P: 91, TSS: 84

León and Cháves [56]



Canna sp

TSS: 92, COD: 88, BOD: 90

Abou-Elela and Hellal [57]



Canna sp

TSS: 92, COD: 92, BOD: 92

Abou-Elela et al. [58]


Paper mill effluent

Canna indica

9,10,12,13-tetrachlor- ostearic acid: 92 and 9,10-dichlorostearic acid: 96

Choudhary et al. [59]



Canna indica

Dye: 70–90

COD: 75

Yadav et al. [60]


Synthetic greywater

Heliconia angusta

COD:40, BOD: 70, TSS: 62, TDS: 19

Saumya et al. [61]



Canna generalis

TN: 52, T-PO3: 9

Ojoawo et al. [62]


Collection pond

Canna Lily

BOD: 70–96, COD: 64–99

Haritash et al. [63]


Hostel greywater

Canna indica

COD, TKN and Pathogen all up 70

Patil and Munavalli, [64]



Polianthus tuberosa L.

Heavy metals (Pb and Fe: 73–87), (Cu and Zn: 31–34) and Ni and Al: 20–26

Singh and Srivastava [65]



Iris pseudacorus

TN: 30, TP:28

Gill and O’Luanaigh [66]



Zantedeschia aethiopica, Canna indica

N: 65–67, P: 63–74, Zn and Cu: 98–99, Carbamazepine: 25–51, LAS: 60–72

Macci et al. [67]


Flower farm

Canna spp.

BOD: 87, COD: 67, TSS: 90, TN: 61

Kimani et al. [68]



Zantedeschia aethiopoca

COD: 35, TN: 45.6

Belmont and Metcalfe [69]



ZantedeschiaAethiopica and Canna flaccid

SST: 85.9, COD: 85.8, NO3-N: 81.7, NH4-N: 65.5, NT: 72.6

Belmont et al. [70]


Coffee processing

Heliconia psittacorum

COD: 91, Coliformes: 93

Orozco et al. [71]



Strelitzia reginae, Zantedeschia esthiopica, Canna hybrids, Anthurium andreanum, Hemerocallis Dumortieri

COD: >75, P: >66, Coliforms: 99

Zurita et al. [72]



Zantedeschia aethiopica

BOD: 79, TN: 55, PT: 50

Zurita et al. [73]


Wastewater form canals

Zantedeschia aethiopica

COD: 92, N-NH4: 85, P-PO4: 80

Ramírez-Carrillo et al. [74]



Strelitzia reginae, Anthurium, andreanum.

TSS: 62, COD: 80, BOD: 82, TP: >50, TN: >49

Zurita et al. [75]



Zantedeschia aethiopica and Anemopsis californica

As: 75–78

Zurita et al. [76]



Gladiolus spp

BOD: 33, TN: 53, TP: 75

Castañeda and Flores [77]


Mixture of greywater (from a cafeteria and research laboratories)

Zantedeschia aethiopica and Canna indica

COD: 65, NT: 22.4, PT: 5.

Zurita and White [78]



Zantedeschia aethiopica

BOD: 70

Hallack et al. [79]



Heliconia stricta, Heliconia psittacorum and Alpinia purpurata

BOD: 48, COD: 64, TP: 39, TN: 39

Méndez-Mendoza et al. [80]



Canna hybrids and Strelitzia reginae

DQO: 86, NT: 30–33, PT: 24–44

Merino-Solís et al. [81]



Zantedeschia aethiopica and Strelitzia reginae

COD: 75, TN: 18, TP: 2, TSS: 88.

Zurita and Carreón-Álvarez [82]



Spathiphyllum wallisii, Zantedechia aethiopica, Iris japonica, Hedychium coronarium, Alocasia sp, Heliconia sp. and Strelitzia reginae.

N-NH4: 64-93

BOD: 22–96

COD: 25–64

Garzón et al. [83]



Zantedeschia aethiopica, Lilium sp, Anturium spp and Hedychium coronarium

NT: 47, PT: 33, COD: 67

Hernández [84]


Stillage Treatment

Canna indica

BOD: 87, COD: 70

López-Rivera et al. [85]



Iris sibirica and Zantedeschia aethiopica

Carbamazepine: 50–65

Tejeda et al. [86]



Alpinia purpurata and Zantedeschia aethiopica


Marín-Muñiz et al. [87]


Polluted river

Zantedeschia aethiopica

NO3-N: 45, NH4-N: 70, PO4-P: 30

Hernández et al. [18]



Spathiphyllum wallisii, and Zantedeschia aethiopica


Sandoval-Herazo et al. [88]



Strelitzia reginae


Martínez et al. [21]



Canna latifolia

TSS: 97, COD: 97, BOD: 89, TP: >30

Sigh et al. [89]



Canna indica mixed with other plants

COD: 41–73, BOD: 41–58

Calheiros et al. [90]



Canna flaccida, Zantedeschia aethiopica, Canna indica, Agapanthus africanus and Watsonia borbonica

BOD, COD, P-PO4, NH4 and total coliform bacteria (all up to 84)

Calheiros et al. [91]



Iris spp

Bacteria: 37

García et al. [92]



Iris pseudacorus

Bacteria: 43

Ansola et al. [93]

Sri Lanka


Canna iridiflora

BOD: 66, TP: 89, NH4-N: 82, N-NO3: 50

Weragoda et al. [94]



Canna indica

N-NH4: 73, BOD: 11

Chyan et al. [95]


Canna indica

N-NH4: 57, N-NO3: 57

Chyan et al. [96]



Canna spp

COD: 92, BOD: 93, TSS: 84, NH4-N: 88, TP: 90

Sirianuntapiboon and Jitvimolnimit [97]



Canna siamensis, Heliconia spp and Hymenocallis littoralis

BOD: 91–99, SS: 52–90, TN: 72–92 and TP: 72–77

Sohsalam et al. [98]



Heliconia psittacorum L.f. and Canna generalis L. Bailey

TSS: Both > 88, COD: 42-83

Konnerup et al. [99]


Fermented fish production

Canna hybrid

BOD, COD, TKN: ~ 97

Kantawanichkul et al. [100]


Collection system for business and hotel

Cannae lilies, Heliconia

BOD: 92, TSS: 90, NO3-N: 50, TP: 46

Brix et al. [101]



Crinum asiaticum, Spathiphyllum clevelandii Schott

PO4-P: ~20

Torit et al. [102]



Iris australis

NH4-N: 91, NO3-N: 89, TN: 91

Tunçsiper [103]



Canna flaccida, Gladiolus sp., Iris sp.

Baceria: ~50

Neralla et al. [104]



Canna· generalis, Eleocharis dulcis, Iris Peltandravirginica.

N: ~50, P: ~60

Palomsky et al. [105]



Iris pseudacorus L., Canna x. generalis L.H. Bail., Hemerocallis fulva L. and Hibiscus moscheutosL.

BOD > 75, TSS > 88, Fecal baceteria > 93

Karathanasis et al. [14]


Tilapia production

Canna sp.

TSS: 90, NO2-N: 91, NO3-N: 76, COD: 12.5 and NH3-N: 7.5

Zachritz et al. [106]


Stormwater runoff

Canna x generalis Bailey, Iris pseudacorus L., Zantedeschia aethiopica (L.)

N and P

Canna (>90), Iris (>30)

Zantedeschia (>90)

Chen et al. [107]



Aeonium purpureum and Crassula ovate, Equisetum hyemale, Nasturtium, Narcissus impatiens, and Anigozanthos

TSS: 95

BOD: 97

Yu et al. [16]



Canna generalis

BOD: 50, COD: 25–55

Konnerup et al. [108]

United Kingdom

Herbicide polluted water

Iris pseudacorus

Atrazine: 90–100

McKinlay and Kasperek. [109]

A review of the available literature showed that ornamental plants are used to remove pollutants from domestic, municipal, aquaculture ponds, industrial or farm wastewater. The removal efficiency of ornamental plants was also evaluated for the following parameters: biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorous (TP), ammonium (NH4-N), nitrates (NO3-N), coliforms and some metals (Cu, Zn, Ni and Al). There is no clear pattern in the use of certain species of ornamental plants for certain types of wastewater. However, it is important to keep in mind that CWs using ornamental plants are usually utilized as secondary or tertiary treatments, due to the reported toxic effects that high organic/inorganic loading has on plants in systems that use them for primary treatment (in the absence of other complementary treatment options) [110][111]. The use of OFP in CWs generates an esthetic appearance in the systems. In CWs with high plant production, OFP harvesting can be an economic entity for CW operators, providing social and economic benefits, such as the improvement of system landscapes and a better habitat quality. Some authors have reported that polyculture systems enhanced the CW resistance to environmental stress and disease [14][112].


  1. Kadlec, R.; Wallace, S. Treatment Wetlands, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2009.
  2. Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; Wiley: Hoboken, NJ, USA, 2015.
  3. Marín-Muñiz, J.L. Humedales: Riñones del planeta y hábitat de múltiples especies; SEV-COLVER: Mexico, 2018; 100p.
  4. Brix, H. Functions of macrophytes in constructed wetlands. Water Sci. Technol. 1994, 4, 71–78.
  5. Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419.
  6. Valipour, A.; Ahn, Y. Constructed wetlands as sustainable ecotechnologies in decentralization practices: A review. Environ. Pollut. Res. 2016, 23, 180–197.
  7. Valipour, A.; Azizi, S.; Raman, V.K.; Jamshidi, S.; Hamnabard, N. The comparative evaluation of the performance of two phytoremediation systems for domestic wastewater treatment. Environ. Sci. Eng. 2014, 56, 319–326.
  8. Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 20, 133–156.
  9. Vymazal, J. Emergent plant used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592.
  10. Wang, C.; Zhang, M.; Ye, M.; Wang, J.; Li, G. Pilot-scale electrochemical oxidation combined with constructed wetland system for unconventional surface water treatment. J. Chem. Technol. Biotechnol. 2014, 89, 1599–1606.
  11. Mburu, N.; Rousseau, D.; Bruggen, J.; Lens, P. Use of Macrophyte Cyperus papyrus in Wastewater Treatment; Springer International Publishing: Cham, Switzerland, 2015.
  12. Bachand, P.A.M.; Horne, A.J. Denitrification in constructed free-water surface wetland: II. Effects of vegetation and temperature. Ecol. Eng. 2000, 14, 17–32.
  13. Tilley, D.R.; Badrinarayanan, H.; Rosati, R.; Son, J. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquac. Eng. 2002, 26, 81–109.
  14. Karathanasis, A.D.; Potter, C.L.; Coyne, M.S. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol. Eng. 2003, 20, 157–169.
  15. Chang, N.B.; Islam, K.; Marimon, Z.; Wanielista, M.P. Assessing biological and chemical signatures related to nutrient removal by floating islands in stormwater mesocosms. Chemosphere 2012, 88, 736–743.
  16. Yu, Z.; Bill, B.; Stenstrom, M.; Cohen, Y. Feasibility of a semi-batch vertical-flow wetland for onsite residential gray water treatment. Ecol. Eng. 2015, 82, 311–322.
  17. Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water 2018, 10, 678.
  18. Hernández, M.E.; Galindo-Zetina, M.; Hernandez-Hernández, J.C. Greenhouse gas emissions and pollutant removal in treatment wetlands with ornamental plants under subtropical conditions. Ecol. Eng. 2018, 114, 88–95.
  19. Lai, W.; Zhang, Y.; Chen, Z. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecol. Eng. 2012, 39, 24–30.
  20. Morgan, J.A.; Martin, J.F. Performance of an ecological treatment system at three strengths of dairy wastewater loading. Ecol. Eng. 2008, 33, 195–209.
  21. Martínez, N.; Tejeda, A.; Del Toro, A.; Sánchez, M.P.; Zurita, F. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without and internal source of carbon. Sci. Total Environ. 2018, 645, 524–532.
  22. Baptestini, G.; Matos, A.; Martinez, M.; Borges, A.; Matos, M. Hydraulic conductivity variability in horizontal subsurface flow constructed wetlands. J. Braz. Assoc. Agric. Eng. 2017, 37, 333–342.
  23. Stottmeister, U.; Wiebner, A.; Kuschk, P.; Kappelmer, U.; Kästner, M.; Bederski, O.; Müler, R.A.; Moormann, H. Effects of plants and microotganisms in constructed wetlands for wastewater treatment. Biotecnol. Adv. 2003, 22, 93–117.
  24. Tanner, C.C. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eigh emergent species. Ecol. Eng. 1996, 7, 59–83.
  25. Liu, X.; Huang, S.; Tang, T.; Liu, X.; Scholz, M. Growth characteristic and nutrient removal capability of plants in subsurface vertical flow constructed wetlands. Ecol. Eng. 2012, 44, 189–198.
  26. Paulo, P.L.; Begosso, L.; Pansonato, N.; Shrestha, R.R.; Bonez, M.A. Design and configuration criteria for wetland systems treating greywater. Water Sci. Technol. 2009, 60, 2001–2007.
  27. Paulo, P.L.; Azevedo, C.; Begosso, L.; Galbiati, A.F.; Boncz, M.A. Natural systems treating greywater and blackwater on-site: Integrating treatment, reuse and landscaping. Ecol. Eng. 2013, 50, 95–100.
  28. Sarmento, A.P.; Borges, A.C.; Matos, A.T. Effect of cultivated species and retention time on the performance of constructed wetlands. Environ. Technol. 2013, 35, 961–965.
  29. Prata, R.; Matos, A.; Cecon, P.; Monaco, P.; Pimenta, L. Sewage treatment in wetlands cultivated with yellow lilly. Eng. Agrícola 2013, 33, 1144–1155.
  30. Teodoro, A.; Boncz, M.; Júnior, A.; Paulo, P. Disinfection of greywater pretreated by constructed wetlands using photo-Fenton: Influence of pH on the decay of Pseudomonas aeruginosa. J. Environ. Chem. Eng. 2014, 2, 958–962.
  31. Shi, L.; Wang, B.Z.; Cao, X.D.; Wang, J.; Lei, Z.H.; Wang, Z.R.; Liu, Z.Y.; Lu, B.N. Performance of a subsurface-flow constructed wetland in Southern China. J. Environ. Sci. 2004, 16, 476–481.
  32. Li, G.; Wu, Z.; Cheng, S.; Liang, W.; He, F.; Fu, G.; Zhong, F. Application of constructed wetlands on wastewater treatment for aquaculture ponds. Wuhan Univ. J. Nat. Sci. 2007, 12, 1131–1135.
  33. Yang, Q.; Chen, Z.; Zhao, J.; Gu, B. Contaminant removal of domestic wastewater by constructed wetlands: Effects of plant species. J. Integr. Plant Biol. 2007, 49, 437–446.
  34. Zhang, Z.H.; Rengel, Z.; Meney, K. Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono- and mixed culture in wetland microcosms? Water Air Soil Pollut. 2007, 183, 95–105.
  35. Zhang, X.B.; Liu, P.; Yang, Y.S.; Chen, W.R. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J. Environ. Sci. (China) 2007, 19, 902–909.
  36. Sun, L.P.; Liu, Y.; Jin, H. Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecol. Eng. 2009, 35, 135–140.
  37. Cui, L.; Ouyang, Y.; Lou, Q.; Yang, F.; Chen, Y.; Zhu, W.; Luos, S. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 2010, 36, 1083–1088.
  38. Zhang, S.; Zhou, Q.; Xu, D.; He, F.; Cheng, S.; Liang, W.; Du, C.; Wu, Z. Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: Effects on water quality and zooplankton. Pol. J. Environ. Stud. 2010, 19, 1063–1070.
  39. Qiu, Z.; Wang, M.; Lai, W.; He, F.; Chen, Z. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. Hydrobiologia 2011, 661, 251–260.
  40. Wen, L.; Hua, C.; Ping, Z.; Xiang, L. Removal of total phosphorus from septic tank effluent by the hybrid constructed wetland system. Procedia Environ. Sci. 2011, 10, 2102–2107.
  41. Wu, H.; Zhang, J.; Li, P.; Zhang, J.; Xie, H.; Zhang, B. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol. Eng. 2011, 37, 560–568.
  42. Xie, X.; He, F.; Xu, D.; Dong, J.; Cheng, S.; Wu, Z. Application of large scale integrated vertical-flow constructed wetland in Beijing Olympic forest park: Design, operation and performance. Water Environ. J. 2012, 26, 100–107.
  43. Chang, J.J.; Wu, S.Q.; Dai, Y.D.; Liang, W.; Wu, Z.B. Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecol. Eng. 2012, 44, 152–159.
  44. Gao, J.; Wang, W.; Guo, X.; Zhu, S. Nutrient removal capability and growth characteristics of iris sibrica in subsurface vertical flow constructed wetlands in winter. Ecol. Eng. 2014, 70, 351–361.
  45. Li, J.; Liu, X.; Yu, Z.; Yi, X.; Ju, Y.; Huang, J.; Liu, R. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate. Water Sci. Technol. 2014, 70, 620–626.
  46. Gao, J.; Zhang, J.; Ma, N.; Wang, W.; Ma, C.; Zhang, R. Cadmium removal capability and growth characteristics of iris sibrica in subsurface vertical flow constructed wetlands. Ecol. Eng. 2015, 84, 443–450.
  47. Hu, Y.; He, F.; Ma, L.; Zhang, Y.; Wu, Z. Microbial nitrogen removal patways in integrated vertical-flow constructed wetland systems. Bioresour. Technol. 2016, 207, 339–345.
  48. Wang, W.; Ding, Y.; Ullman, J.; Ambrose, R.; Wang, Y.; Song, X.; Zhao, Z. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios. Environ. Sci. Pollut. Res. 2016, 23, 9012–9018.
  49. Morales, G.; López, D.; Vera, I.; Vidal, G. Humedales construidos con plantas ornamentales para el tratamiento de materia orgánica y nutrientes contenidos en aguas servidas. Theoria 2013, 22, 33–46.
  50. Burgos, V.; Araya, F.; Reyes-Contreras, C.; Vera, I.; Vidal, G. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading constructed wetlands under different organic sewage loading. Ecol. Eng. 2017, 99, 246–255.
  51. Leiva, A.; Núñez, R.; Gómez, G.; López, D.; Vidal, G. Performance of ornamental plants in monoculture and polyculture horizontal subsurface flow constructed wetlands for treating wastewater. Ecol. Eng. 2018, 120, 116–125.
  52. Gutiérrez-Mosquera, H.; Peña-Varón, M. Eliminación de nitrógeno en un humedal construido subsuperficial, plantado con Heliconia psíttacorum. Tecnol. Cienc. Agua 2011, 11, 49–60.
  53. Madera-Parra, C.A.; Peña-Salamanca, E.J.; Peña, M.R.; Rousseau, D.P.L.; Lens, P.N. Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. Int. J. Phytoremediat. 2015, 17, 16–24.
  54. Marrugo-Negrete, J.; Ortega-Ruíz, J.; Navarro-Frómeta, A.; Enamorado-Montes, G.; Urango-Cárdenas, I.; Pinedo-Hernández, J.; Durango-Hernández, J.; Estrada-Martínez, A. Remoción de cipermetrina presente en el baño de ganado utilizando humedales construidos. Corpoica Cienc. Tecnol. Agrop. 2016, 17, 203–216.
  55. Toro-Vélez, A.F.; Madera-Parra, C.A.; Peñón-Varón, M.R.; Lee, W.Y.; Bezares-Cruz, J.C.; Walker, W.S.; Cárdenas-Henao, H.; Quesada-Calderón, S.; García-Hernández, H.; Lens, P.N.I. BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Sci. Total Environ. 2016, 542, 93–101.
  56. León, C.; Cháves, D. Tratamiento de residual vacuno utilizando microalgas, la lenteja de agua Lemna aequinoctiales y un humedal subsuperficial en Costa Rica. Rev. Latinoam. Biotecnol. Ambient. Algal 2010, 1, 155–177.
  57. Abou-Elela, S.; Hellal, M. Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng. 2012, 47, 209–213.
  58. Abou-Elela, S.; Golinielli, G.; Abou-Taleb, E.; Hellal, M. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng. 2013, 61, 460–468.
  59. Choudhary, A.K.; Kumar, S.; Sharma, C. Removal of chlorinated resin and fatty acids from paper mill wastewater through constructed wetland. World Acad. Sci. Eng. Technol. 2010, 80, 67–71.
  60. Yadav, A.; Dash, P.; Mohanty, A.; Abbassi, R.; Mishra, B. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol. Eng. 2012, 47, 126–131.
  61. Saumya, S.; Akansha, A.; Rinaldo, J.; Jayasri, M.A.; Suthindhiran, K. Construction and evaluation of prototype subsurface flow wetland planted with Heliconia angusta for the treatment of synthetic greywater. J. Clean. Prod. 2015, 91, 235–240.
  62. Ojoawo, S.; Udayakuman, G.; Naik, P. Phytoremediation of phosphorus and nitrogen with Canna x generalis reeds in domestic wastewater through NMAMIT constructed wetlands. Aquat. Procedia 2015, 4, 349–356.
  63. Haritash, A.K.; Sharma, A.; Bahel, K. The potential of Canna lily for wastewater treatment under Indian conditions. Int. J. Phytoremed. 2015, 17, 999–1004.
  64. Patil, Y.M.; Munavalli, G.R. Performance evaluation of and integrated on-site greywater treatment system in a tropical region. Ecol. Eng. 2016, 95, 492–500.
  65. Singh, M.; Srivastava, R. Horizontal subsurface flow constructed wetland for heavy metal removal from domestic wastewater. Environ. Prog. Sustain. Energy 2016, 35, 125–132.
  66. Gill, L.W.; O’Luanaigh, N. Nutrient removal from on-site wastewater in horizontal subsurface flow constructed wetlands in Ireland. Water Pract. Technol. 2011, 6, wpt2011041.
  67. Macci, C.; Peruzzi, E.; Doni, S.; Iannelli, R.; Masciandaro, G. Ornamental plants for micropollutant removal in wetland systems. Environ. Sci. Pollut. Res. 2015, 22, 2406–2415.
  68. Kimani, R.W.; Mwangi, B.M.; Gichuki, C.M. Treatment of flower farm wastewater effluents using constructed wetlands in lake Naivasha Kenya. Indian J. Sci. Technol. 2012, 5, 1870–1878.
  69. Belmont, M.A.; Metcalfe, C.D. Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants—A laboratory-scale study. Ecol. Eng. 2003, 21, 233–247.
  70. Belmont, M.A.; Cantellano, E.; Thompson, S.; Williamson, M.; Sánchez, A.; Metcalfe, C.D. Treatment of domestic wastewater in a pilot scale natural treatment system in central Mexico. Ecol. Eng. 2004, 23, 299–311.
  71. Orozco, C.; Cruz, A.; Rodríguez, M.; Pohlan, A. Humedal subsuperficial de flujo vertical como sistema de depuración terciaria en el proceso de beneficiado de café. Hig. Sanid. Ambient. 2006, 6, 190–196.
  72. Zurita, F.; De Anda, J.; Belmont, M. Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Qual. Res. J. Can. 2006, 41, 410–417.
  73. Zurita, F.; Belmont, M.; De Anda, J.; Cervantes-Martínez, J. Stress detection by laser-induced fluorescence in Zantedeschia aethiopica planted in subsurface-flow treatment wetlands. Ecol. Eng. 2008, 33, 110–118.
  74. Ramírez-Carrillo, H.F.; Luna-Pabello, V.M.; Arredondo-Figueroa, JL. Evaluación de un humedal artificial de flujo vertical intermitente, para obtener agua de buena calidad para la acuicultura. Rev. Mex. Ing. Quím. 2009, 8, 93–99.
  75. Zurita, F.; De Anda, J.; Belmont, M.A. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2009, 35, 861–869.
  76. Zurita, F.; Del Toro-Sánchez, C.; Gutierrez-Lomelí, M.; Rodríguez-Sahagún, A.; Castellanos-Hernández, O.; Ramirez-Martínez, G.; White, J. Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecol. Eng. 2012, 47, 101–104.
  77. Castañeda, A.A.; Flores, H.E. Tratamiento de aguas residuales domésticas mediante plantas macrófitas típicas en Los Altos de Jalisco, México. Paakat Rev. Tecnol. Sociedad 2013, 3, 126–134.
  78. Zurita, F.; White, J. Comparative study of three two-stage hybrid ecological wastewater treatment systems for producing high nutrient, reclaimend water for irrigation reuse in developing countries. Water 2014, 6, 213–228.
  79. Hallack, M.; Payan, J.C.; Mungaray, A.; López, A.; González, M.; Castañón, M.C.; Pérez-Banuet, M. Implementación y evaluación de un sistema de tratamiento de agua residual natural a través de humedales construidos en el noroeste de México. In Gestión de Humedales Españoles y Mexicanos: Apuesta Conjunta por su Futuro; Sastre, A., Díaz, I., Ramíres, J., Eds.; Universidad de Alcalá, 2015; ISBN 978-84-16599-15-8. Available online: (accessed on 13 November 2018).
  80. Mendoza, A.; Bello-Mendoza, R.; Herrea-López, D.; Mejía-González, G.; Calixto-Romo, A. Performance of constructed wetlands with ornamental plants in the treatment of domestic wastewater under the tropical climate of south Mexico. Water Pract. Technol. 2015, 10, 110–123.
  81. Merino-Solís, M.; Villegas, E.; de Anda, J.; López-López, A. The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland. Water 2015, 7, 1149–1163.
  82. Zurita, F.; Carreón-Álvarez, A. Performance of three pilot-scale hybrid constructed wetlands for total coliforms and Escherichia coli removal from primary effluent—A 2-year study in subtropical climate. J. Water Health 2015, 13, 446–458.
  83. Garzón, M.; González, J.; García, R. Evaluación de un sistema de tratamiento doméstico para reúso de agua residual. Rev. Int. Contam. Ambient. 2016, 32, 199–211.
  84. Hernández, M.E. Humedales ornamentales con participación comunitaria para el saneamiento de aguas municipales en México. RINDERESU 2016, 1, 1–12.
  85. López-Rivera, A.; López-López, A.; Vallejo-Rodríguez, R.; León-Becerril, E. Effect of the organic loading rate in the stillage treatment in a constructed wetland with Canna indica. Environ. Prog. Sustain. Energy 2016, 35, 411–415.
  86. Tejeda, A.; Torres-Bojorges, A.; Zurita, F. Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecol. Eng. 2017, 98, 410–417.
  87. Marín-Muñiz, J.L.; García-González, M.C.; Ruelas-Monjardín, L.C.; Moreno-Casasola, P. Influence of different porous media and ornamental vegetation on wastewater pollutant removal in vertical subsurface flow wetland microcosms. Environ. Eng. Sci. 2018, 35, 88–94.
  88. Sandoval-Herazo, L.C.; Alvarado-Lassman, A.A.; Marín-Muñiz, J.L.; Méndez-Contreras, J.M.; Zamora-Castro, S.A. Effects of the use of ornamental plants and different substrates in the removal of wastewater pollutants through microcosms of constructed wetlands. Sustainability 2018, 10, 1594.
  89. Singh, S.; Haberl, R.; Moog, O.; Shrestha, R.R.; Shrestha, P.; Shrestha, R. Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—A model for DEWATs. Ecol. Eng. 2009, 35, 654–660.
  90. Calheiros, C.S.; Rangel, O.S.S.; Castro, P.K.L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res. 2007, 41, 1790–1798.
  91. Calheiros, C.; Bessa, V.; Mesquita, R.; Brix, H.; Rangel, A.; Castro, P. Constructed wetlands with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol. Eng. 2015, 79, 1–7.
  92. García, M.; Soto, F.; González, J.M.; Bécares, E. A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecol. Eng. 2008, 32, 238–243.
  93. Ansola, G.; González, J.M.; Cortijo, R.; de Luis, E. Experimental and full-scale pilot plant constructed wetlands for municipal wastewaters treatment. Ecol. Eng. 2003, 21, 43–52.
  94. Weragoda, S.K.; Jinadasa, K.B.S.N.; Zhang, D.Q.; Gersberg, R.M.; Tan, S.K.; Ng, W.J. Tropical application of floating treatment wetlands. Wetlands 2012, 32, 955–961.
  95. Chyan, J.M.; Lu, C.C.; Shiu, R.F.; Bellotindos, L. Purification of landscape water by using an innovative application of subsurface flow constructed wetlands. Environ. Sci. Pollut. Res. 2016, 23, 535–545.
  96. Chyan, J.M.; Jhu, Y.X.; Chen, I.; Shiu, R. Improvement of nitrogen removal by external aeration and intermittent circulation in a subsurface flow constructed wetland of landscape garden ponds. Process Saf. Environ. Prot. 2016, 104, 587–597.
  97. Sirianuntapiboon, S.; Jitvimolnimit, S. Effect of plantation pattern on the efficiency of subsurface flow constructed wetland (SFCW) for sewage treatment. Afr. J. Agric. Res. 2007, 2, 447–454.
  98. Sohsalam, P.; Englande, A.; Sirianuntapiboon, S. Seafood wastewater treatment in constructed wetlands: Tropical case. Bioresour. Technol. 2008, 99, 1218–1224.
  99. Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257.
  100. Kantawanichkul, S.; Karnchanawong, S.; Jing, S.H. Treatment of fermented fish production wastewater by constructed wetland system in Thailand. Chiang Mai J. Sci. 2009, 36, 149–157.
  101. Brix, H.; Koottatep, T.; Fryd, O.; Laugesen, C.H. The flower and the butterfly constructed wetland system at Koh Phi Phi—System design and lessons learned during implementation and operation. Ecol. Eng. 2011, 37, 729–735.
  102. Torit, J.; Siangdung, W.; Thiravetyan, P. Phosphorus removal from domestic wastewater by Echinodorus cordifolius L. J. Environ. Sci. Health Part A 2012, 47, 794–800.
  103. Tunçsiper, B. Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system. Desalination 2009, 247, 466–475.
  104. Neralla, S.; Weaver, R.W.; Lesikar, B.J.; Persyn, R.A. Improvement of domestic waste water quality by subsurface flow constructed wetlands. Bioresour. Technol. 2000, 75, 19–25.
  105. Polomski, R.F.; Bielenberg, D.G.; Whitwell, T. Nutrient Recovery by Seven Aquatic Garden Plants in a Laboratory-scale Subsurface-constructed Wetland. Hortscience 2007, 42, 1674–1680.
  106. Zachritz, W.H.; Hanson, A.T.; Sauceda, J.A.; Fitzsimmons, K.M. Evaluation of submerged surface flow (SSF) constructed wetlands for recirculating tilapia production systems. Aquac. Eng. 2008, 39, 16–23.
  107. Chen, Y.; Bracy, R.; Owings, A. Nitrogen and phosphorous removal by ornamental and wetland plants in a greenhouse recirculation research system. HortScience 2009, 44, 1704–1711.
  108. Konnerup, D.; Trang, N.T.D.; Brix, H. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics? Aquaculture 2011, 313, 57–64.
  109. McKinlay, R.G.; Kasperek, K. Observations on decontamination of herbicide polluted water by marsh plant system. Water Res. 1999, 33, 505–511.
  110. Gersberg, R.M.; Elkins, B.V.; Lyon, S.R.; Goldman, C.R. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res. 1986, 20, 363–368.
  111. Duarte, A.; Canais-Seco, T.; Peres, J.; Bentes, I.; Pinto, J. Sustainability indicators of subsusrface flow constructed wetlands in Portuguese small communities. WSEAS Trans. Environ. Dev. 2010, 9, 625–634.
  112. Prata, R.C.; Matos, A.T.D.; Cecon, P.R.; Monaco, P.A.; Pimenta, L.A. Sewage treatment in wetlands cultivated with yellow lily. Eng. Agríc. 2013, 33, 1144–1155.
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 658
Revisions: 2 times (View History)
Update Date: 09 Aug 2021