Neurodegeneration in Cognitive Impairment and Mood Disorders
  • View Times: 16
  • |
  • Release Date: 2024-04-15
  • neuroscience
  • stroke
  • drug repurposing
  • schizophrenia
  • cognitive dysfunction
  • multiple sclerosis
  • antioxidants
  • antidepressant
  • post-traumatic stress disorder
  • autism
Video Introduction

This video is adapted from 10.3390/biomedicines12030574

Neurodegeneration poses a significant challenge for the fields of neuroscience and medicine, as it is the underlying cause of the development and advancement of numerous neurodegenerative and psychiatric disorders [1][2][3]. It encompasses the progressive decay and loss of neurons across various levels of organization, ranging from molecular to network levels [4][5][6][7]. Onset can manifest at various life stages, ranging from early phases, as observed in neurodevelopmental disorders, to later stages, exemplified by conditions like Alzheimer’s disease (AD) [8][9][10]. Neurodegeneration has the potential to impact cognitive, emotional, and behavioral functions, as well as the neural mechanisms associated with consciousness and attention [11][12][13]. Hence, comprehending the mechanisms and repercussions of neurodegeneration is imperative in order to identify risk factors, biomarkers, and therapeutic targets [14][15][16]. Nevertheless, the existing therapies for neurodegenerative disorders primarily address alleviate symptoms but are largely inadequate in terms of efficacy. Hence, there is a requirement for new and inventive methods, such as non-invasive brain stimulation, that can regulate neural activity and plasticity in a secure and reversible manner [17][18][19][20][21]. The field is rapidly evolving, with a focus on identifying new avenues of clinical research, elucidating potential mechanisms for the therapeutic effects of non-invasive brain stimulation (NIBS) and exploring the potential synergy between different stimulation protocols and pharmacological interventions [22][23][24][25][26][27].

References
  1. Rajkumar, R.P. Comorbid depression and anxiety: Integration of insights from attachment theory and cognitive neuroscience, and their implications for research and treatment. Front. Behav. Neurosci. 2022, 16, 1104928.
  2. Husain, M. Transdiagnostic neurology: Neuropsychiatric symptoms in neurodegenerative diseases. Brain 2017, 140, 1535–1536.
  3. Galts, C.P.; Bettio, L.E.; Jewett, D.C.; Yang, C.C.; Brocardo, P.S.; Rodrigues, A.L.S.; Thacker, J.S.; Gil-Mohapel, J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci. Biobehav. Rev. 2019, 102, 56–84.
  4. Nani, A.; Manuello, J.; Mancuso, L.; Liloia, D.; Costa, T.; Vercelli, A.; Duca, S.; Cauda, F. The pathoconnectivity network analysis of the insular cortex: A morphometric fingerprinting. NeuroImage 2021, 225, 117481.
  5. Mancuso, L.; Cavuoti-Cabanillas, S.; Liloia, D.; Manuello, J.; Buzi, G.; Duca, S.; Cauda, F.; Costa, T. Default Mode Network spatial configuration varies across task domains. bioRxiv 2021.
  6. Makhlouf, A.T.; Drew, W.; Stubbs, J.L.; Taylor, J.J.; Liloia, D.; Grafman, J.; Silbersweig, D.; Fox, M.D.; Siddiqi, S.H. Heterogenous Patterns of Brain Atrophy in Schizophrenia Localize to A Common Brain Network. 2023. Available online: https://www.researchgate.net/publication/374933868_Heterogenous_Patterns_of_Brain_Atrophy_in_Schizophrenia_Localize_to_A_Common_Brain_Network/fulltext/65385f565d51a8012b6da326/Heterogenous-Patterns-of-Brain-Atrophy-in-Schizophrenia-Localize-to-A-Common-Brain-Network.pdf (accessed on 27 February 2024).
  7. Turrini, S.; Wong, B.; Eldaief, M.; Press, D.Z.; Sinclair, D.A.; Koch, G.; Avenanti, A.; Santarnecchi, E. The multifactorial nature of healthy brain ageing: Brain changes, functional decline and protective factors. Ageing Res. Rev. 2023, 88, 101939.
  8. Du, H.; Yang, B.; Wang, H.; Zeng, Y.; Xin, J.; Li, X. The non-linear correlation between the volume of cerebral white matter lesions and incidence of bipolar disorder: A secondary analysis of data from a cross-sectional study. Front. Psychiatry 2023, 14, 1149663.
  9. Modgil, S.; Lahiri, D.K.; Sharma, V.L.; Anand, A. Role of early life exposure and environment on neurodegeneration: Implications on brain disorders. Transl. Neurodegener. 2014, 3, 1–14.
  10. Hickman, R.A.; O’Shea, S.A.; Mehler, M.F.; Chung, W.K. Neurogenetic disorders across the lifespan: From aberrant development to degeneration. Nat. Rev. Neurol. 2022, 18, 117–124.
  11. Buglio, D.S.; Marton, L.T.; Laurindo, L.F.; Guiguer, E.L.; Araújo, A.C.; Buchaim, R.L.; Goulart, R.d.A.; Rubira, C.J.; Barbalho, S.M. The role of resveratrol in mild cognitive impairment and Alzheimer’s disease: A systematic review. J. Med. Food 2022, 25, 797–806.
  12. Levenson, R.W.; Sturm, V.E.; Haase, C.M. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annu. Rev. Clin. Psychol. 2014, 10, 581–606.
  13. Cieslak, A.; Smith, E.E.; Lysack, J.; Ismail, Z. Case series of mild behavioral impairment: Toward an understanding of the early stages of neurodegenerative diseases affecting behavior and cognition. Int. Psychogeriatr. 2018, 30, 273–280.
  14. Tanaka, M.; Török, N.; Vécsei, L. Novel pharmaceutical approaches in dementia. In NeuroPsychopharmacotherapy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 2803–2820.
  15. Polyák, H.; Galla, Z.; Nánási, N.; Cseh, E.K.; Rajda, C.; Veres, G.; Spekker, E.; Szabó, Á.; Klivényi, P.; Tanaka, M. The tryptophan-kynurenine metabolic system is suppressed in cuprizone-induced model of demyelination simulating progressive multiple sclerosis. Biomedicines 2023, 11, 945.
  16. Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021, 27, 954–963.
  17. Battaglia, S.; Schmidt, A.; Hassel, S.; Tanaka, M. Case reports in neuroimaging and stimulation. Front. Psychiatry 2023, 14, 1264669.
  18. Tanaka, M.; Diano, M.; Battaglia, S. Insights into structural and functional organization of the brain: Evidence from neuroimaging and non-invasive brain stimulation techniques. Front. Psychiatry 2023, 14, 1225755.
  19. Turrini, S.; Bevacqua, N.; Cataneo, A.; Chiappini, E.; Fiori, F.; Battaglia, S.; Romei, V.; Avenanti, A. Neurophysiological Markers of Premotor–Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023, 11, 1464.
  20. Turrini, S.; Bevacqua, N.; Cataneo, A.; Chiappini, E.; Fiori, F.; Candidi, M.; Avenanti, A. Transcranial cortico-cortical paired associative stimulation (ccPAS) over ventral premotor-motor pathways enhances action performance and corticomotor excitability in young adults more than in elderly adults. Front. Aging Neurosci. 2023, 15, 1119508.
  21. Menardi, A.; Rossi, S.; Koch, G.; Hampel, H.; Vergallo, A.; Nitsche, M.A.; Stern, Y.; Borroni, B.; Cappa, S.F.; Cotelli, M.; et al. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res. Rev. 2022, 75, 101555.
  22. Battaglia, S.; Di Fazio, C.; Mazzà, M.; Tamietto, M.; Avenanti, A. Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity. Int. J. Mol. Sci. 2024, 25, 864.
  23. Battaglia, M.R.; Di Fazio, C.; Battaglia, S. Activated tryptophan-kynurenine metabolic system in the human brain is associated with learned fear. Front. Mol. Neurosci. 2023, 16, 1217090.
  24. Battaglia, S.; Di Fazio, C.; Vicario, C.M.; Avenanti, A. Neuropharmacological modulation of N-methyl-D-aspartate, noradrenaline and endocannabinoid receptors in fear extinction learning: Synaptic transmission and plasticity. Int. J. Mol. Sci. 2023, 24, 5926.
  25. Vila-Merkle, H.; González-Martínez, A.; Campos-Jiménez, R.; Martínez-Ricós, J.; Teruel-Martí, V.; Lloret, A.; Blasco-Serra, A.; Cervera-Ferri, A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front. Behav. Neurosci. 2023, 17, 1122163.
  26. Chu, P.-C.; Huang, C.-S.; Chang, P.-K.; Chen, R.-S.; Chen, K.-T.; Hsieh, T.-H.; Liu, H.-L. Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. Int. J. Mol. Sci. 2023, 24, 2578.
  27. Rymaszewska, J.; Wieczorek, T.; Fila-Witecka, K.; Smarzewska, K.; Weiser, A.; Piotrowski, P.; Tabakow, P. Various neuromodulation methods including Deep Brain Stimulation of the medial forebrain bundle combined with psychopharmacotherapy of treatment-resistant depression—Case report. Front. Psychiatry 2023, 13, 3014.
Full Transcript
1000/1000

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Tanaka, M.; Battaglia, S.; Avenanti, A.; Vécsei, L. Neurodegeneration in Cognitive Impairment and Mood Disorders. Encyclopedia. Available online: https://encyclopedia.pub/video/video_detail/1208 (accessed on 26 May 2024).
Tanaka M, Battaglia S, Avenanti A, Vécsei L. Neurodegeneration in Cognitive Impairment and Mood Disorders. Encyclopedia. Available at: https://encyclopedia.pub/video/video_detail/1208. Accessed May 26, 2024.
Tanaka, Masaru, Simone Battaglia, Alessio Avenanti, László Vécsei. "Neurodegeneration in Cognitive Impairment and Mood Disorders" Encyclopedia, https://encyclopedia.pub/video/video_detail/1208 (accessed May 26, 2024).
Tanaka, M., Battaglia, S., Avenanti, A., & Vécsei, L. (2024, April 15). Neurodegeneration in Cognitive Impairment and Mood Disorders. In Encyclopedia. https://encyclopedia.pub/video/video_detail/1208
Tanaka, Masaru, et al. "Neurodegeneration in Cognitive Impairment and Mood Disorders." Encyclopedia. Web. 15 April, 2024.
Video Production Service