× Warning! The entry has been locked by Sangdun Choi. Click here to unlock it.
Oceans as a Source of Immunotherapy: History Edit
Subjects: Cell Biology
Immune system dysfunction leads to the development of allergies, autoimmune and chronic inflammatory diseases, and cancers. Inflammation has been suggested to be the principal cause of chronic illnesses such as obesity, diabetes, cancer, rheumatoid arthritis (RA), neurodegenerative, and autoimmune diseases (ADs). The hallmark of autoimmunity is chronic inflammation that leads to the release of pro-inflammatory cytokines and other mediators, known as danger-associated molecular patterns (DAMPS), that activate pathogen recognition receptors (PRR) expressed by immune cells. Autoantibodies recognize these DAMPs and activate myeloid immune cells with an enhanced inflammatory response, leading to exacerbation of the condition. This self-perpetuating cycle continues, in order to assist with injury repair [1,2,3].
Recent estimates suggest that 7.6–9.4% of the world’s population is affected by immune-mediated diseases. Such diseases include inflammatory bowel disease (IBD), type 1 diabetes mellitus (TIDM), and RA. Women are up to ten times as likely to be sufferers as men [4]. ADs are among the ten leading causes of death for women, and affect them disproportionately in every age group up to 75 years of age [5]. According to the NIH report, around 23.5 million Americans have ADs, while the American Autoimmune Related Diseases Association (AARDA) puts this figure at 50 million. More than 80 different ADs have been identified and 40 additional diseases are suspected as being ADs [6,7]. The holy grail of immunotherapy is the reprograming of the immune system to maintain or restore homeostasis, and there is an urgent need to develop such drugs.
The search for novel immunomodulators is challenging, despite the existence of considerable amounts of demographic and epidemiological data about ADs. Questions about how autoimmunity is triggered and how self-tolerance is broken down remain to be fully answered. Nevertheless, progression in our understanding of the pathophysiology of ADs has led to the possibility of identifying new drug targets and new effective compounds with significant therapeutic potential. Several drug discovery and development programs are focused on the search for bioactive compounds obtained from natural sources. The study of nature’s enormous arsenal of new bioactive compounds and natural metabolites has historically led to immense benefits with respect to drug discovery [8]. The bioactivity of marine-derived natural products is significantly higher than that of compounds of terrestrial origin. For instance, in a National Cancer Institute preclinical cytotoxicity screen, approximately 1% of the marine samples tested showed anti-tumor potential in comparison with 0.1% of the terrestrial samples tested [9].
Oceans cover three quarters of the Earth’s surface, and contain the world’s greatest biodiversity, with at least 300,000 species of animals and plants described to date [10,11]. The diverse environments of oceanic zones provide a rich source of organisms. The hostile and competitive oceanic environment, with its high salt concentration and variations in hydrostatic pressure, produces microorganisms which are resistant to various kinds of stress, leading to the production of unique biomolecules. This enormous source of marine microorganisms has been exploited as a source of medicine since ancient times. The oceans are an exceptional storehouse of structurally and chemically novel bioactive compounds with unique biological features that are not generally found in terrestrial natural products. Over 60% of the active compounds of marketed formulations are natural products or their synthetic derivatives or mimics [12]. Nearly 3000 new compounds from marine sources have been identified over the last few years, and some have entered clinical trials [13]. Due to improved technologies for deep-sea sample collection and large-scale drug production through aquaculture and drug synthesis, the extent of this activity has been increasing steadily. Advanced engineering and the use of new technologies such as scuba diving techniques, remotely operated vehicles (ROVs) and manned submersibles have opened up the scientific exploration of the marine environment [14,15,16].
Marine compounds have been shown to have significant activity in antiviral, analgesic, antitumor, immunomodulatory, and anti-inflammatory assays [17,18]. Currently, six out of nine drugs in the market for cancer treatment are of marine origin, while several more are under clinical trials [18]. Undoubtedly, in the area of cancer, the marine metabolic arsenal plays a dominant role.