Influence of Crude Oil on Mechanistic Detachment Rate Parameters: History Edit

Previous researchers have not been able to predict the influence of crude oil soil contamination on either the mechanistic dimensional detachment parameter b0 or the threshold parameter b1 of mechanistic detachment model (Wilson model). The aims of this research were: 1) to investigate the influence of crude oil on deriving Wilson model parameters, b0 and b1, with two setups at different scales and different soil moisture contents; and 2) to predict b0 and b1 in crude oil contaminated dry soils with varying levels of contamination.

  • Wilson Model
  • Erodibility Factors
  • Crude Oil
  • Jet Erosion Test
  • Contaminated Soil

[1]

References

  1. 1. Briaud, J.L; Ting, C.K; Chen, H.C; Han, S.W.; Kwak, K.W. Erosion function apparatus for scour rate predictions. J. Geotech. Geoenviron. Eng. 2001, 127, 105-113.2. Hanson, G.J. Surface erodibility of earthen channels at high stresses part ii-developing an in situ testing device. T. ASAE 1990, 33, 132-137.3. Hanson, G.J.; Cook, K.R. Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Appl. Eng. Agr. 2004, 20, 455-462.4. Wan, C.F.; Fell, R. Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotech. Test. J. 2004, 27, 295-303.5. Khanal, A.; Fox, G.A.; Al-Madhhachi, A.T. Variability of erodibility parameters from laboratory mini jet erosion tests. J. Hydrol. Eng. 2016, 21, 10.1061/(ASCE)HE.1943-5584.0001404.6. Abbas, M.N.; Al-Madhhachi, A.T.; Esmael, S.A. Quantifying soil erodibility parameters due to wastewater chemicals. Int. J. Hydrol. Sci. Technol (In press). 7. Al-Madhhachi, A.T.; Hasan, M.B. Influence of in-situ scaling on variability of polluted soil erodibility parameters. Pollution, DOI: 10.22059/poll.2018.252263.393 (In press). 8. Mutter, G.M.; Al-Madhhachi, A.T.; Rashed, R.R. Influence of soil stabilizing materials on lead polluted soils using jet erosion tests. Int. J. Integr. Eng. 2017, 9, 28-38.9. Salah, M.M.; Al-Madhhachi, A.T. Influence of lead pollution on cohesive soil erodibility using jet erosion tests. Environ. Nat. Resour. Res. 2016, 6, 88-98.10. Shayannejad, M.; Ostad-Ali-Askari, K.; Ramesh, A.; Singh, V.P.; Eslamian, S. Wastewater and magnetized wastewater effects on soil erosion in furrow irrigation. Int. J. Res. Stud. Agric. Sci. 2017, 3, 1-14.11. Quyum, A.; Achari, G.; Goodman, R.H. Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils. Sci. Total Environ. 2002, 296, 77-87.12. Tsai, T.T.; Kao, C.M. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. Journal of Hazardous Materials 2009, 170, 466- 472.13. Anoliefo, G.O.; Vwioko, D.E. Effects of spent lubrication oil on the growth of Capsicum anumL and Hycopersiconesculentum Miller. Environmental Pollution, 1995, 88, 361- 364. 14. Tigris oil spill pollutes Iraq water supplyitle of Site. Available online: https://www. oilandgasmiddleeast.com/article-12343-tigris-oil-spill-pollutes-iraq-water-supply (April 24, 2014).15. Al-Madhhachi, A.T. Variability in soil erodibility parameters of tigris riverbanks using linear and non-linear models. Al-Nahrain Journal for Engineering Sciences 2017, 20, 959-969.16. Al-Madhhachi, A.T.; Hanson, G.J.; Fox, G.A.; Tyagi, A.K.; Bulut, R. Measuring soil erodibility using a laboratory “mini” jet. T. ASABE 2013, 56, 901-910.17. Al-Madhhachi, A. T.; Hanson, G. J.; Fox, G. A.; Tyagi, A. K.; Bulut, R. Deriving parameters of a fundamental detachment model for cohesive soils from flume and jet erosion tests. T. ASABE 2013, 56, 489-504.18. Daly, E.R.; Fox, G.A.; Miller, R.B.; Al-Madhhachi, A.T. A scour depth approach for deriving erodibility parameters from jet erosion tests. T. ASABE 2013, 56, 1343-1351.19. Daly, E.R.; Fox, G.A.; Al-Madhhachi, A.T.; Storm, D.E. Variability of fluvial erodibility parameters for streambanks on a watershed scale. Geomorphology 2015, 231: 281-291.20. Hanson, G.J.; Hunt, S.L. Lessons learned using laboratory jet method to measure soil erodibility of compacted soils. T. ASABE. 2007, 23, 305-312.21. Cleaver, J.W.; Yates, B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow. J. Colloid Interface Sci. 1973, 44, no. 3: 464-474.22. Nearing, M.A. A probabilistic model of soil detachment by shallow turbulent flow. T. ASAE 1991, 34, 81-85.23. Sharif, A.R.; Atkinson, J.F. Model for surface erosion of cohesive soils. J. hydraul. Eng. 2012, 138, 581-590.24. Al-Madhhachi, A.T.; Hanson, G.; Fox, G.; Tyagi, A.; Bulut, R. Mechanistic detachment rate model to predict soil erodibility due to fluvial and seepage forces. J. Hydraul. Eng. – ASCE 2014, 140.25. Al-Madhhachi, A.T.; Fox, G.A.; Hanson, G.J. Quantifying the erodibility of streambanks and hillslopes due to surface and subsurface forces. Transactions of the ASABE 2014, 57, 1057-1069.26. Wilson, B. N. Development of a fundamentally based detachment model. T. ASAE 1993, 36, 1105-1114.27. Wilson, B. N. Evaluation of a fundamentally based detachment model. T. ASAE 1993, 36, 1115-1122.28. Khanal, A.; Fox, G.A. Detachment characteristics of root-permeated soils from laboratory jet erosion tests. Ecol. Eng. 2017, 100: 335-343.29. Criswell, D.T., Fox, G.A., Miller, R.B., Daly, E.R., and Al-Madhhachi, A.T. "Flume experiments to determine the erodibility of gravel streambank soils." In 2013 Kansas City, Missouri, July 21 - July 24, 2013, 1. St. Joseph, MI: ASABE, 2013.30. Criswell, D.T.; Al-Madhhachi, A.T.; Fox, G.A.; Miller R. B. Deriving erodibility parameters of a mechanistic detachment model for gravels. Transactions of the ASABE 2016, 59, 145-151.31. Chepil, W. Equilibrium of soil grains at the threshold of movement by wind 1. Soil Science Society of America Journal 1959, 23, 422-428.32. Einstein, H.A. The bed-load function for sediment transportation in open channel flows. Vol. 1026: Washington, D.C.: USDA Soil Conservation, 1950. 33. Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div., ASCE, 1965, 91, 105-139.34. Einstein, H.A.; El-Samni, E.-S.A.; Hydrodynamic forces on a rough wall. Rev. Mod. Phys. 1949, 21, 520-524.35. Freeze, R. A.; Cherry, J. A. Groundwater, Prentice Hall, Upper Saddle River, NJ, 1979.36. Ibrahem M. M.; Mohammed A. A.; Jar-Allah A.T. Kinetics of sulfur, vanadium and nickel removal from basra crude oil hydro treating. Tikrit J. Eng. Sci. 2010, 17: 1-14.37. Al-Madhhachi, A.T.; Hanson, G.; Fox, G.; Tyagi, A.; Bulut, R. Measuring erodibility of cohesive soils using laboratory jet erosion tests. Paper presented at the World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability 2011.38. Wang, Y.; Feng, J.; Lin, Q.; Lyu, X.; Wang, X.; Wang, G. Effects of crude oil contamination on soil physical and chemical properties in momoge wetland of china. Chin. Geog. Sci. 2013, 23, 708-715.39. Richardson, V.; Herath, G.; Kalpage, C.; Jinadasa, K. Physico-chemical characteristic of a petroleum contaminated soil from the spill site of jaffna district. Proceedings of the 6th International Conference on Structural Engineering and Construction Management 2015.
More