Copper-Based Diamond-like Thermoelectric Compounds: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Subjects: Others
Contributor: , , ,

铜基类金刚石(CBDL)化合物含有大量的家族成员,包括三元I-III-VI2黄胆石,I3–V–VI4斯坦尼特,我2-四至六3锡,第四纪I2-二-四-六4化合物,甚至大细胞铜10B2C4D13四面体和铜26P2Q6S32鞘石。

  • thermoelectric
  • copper-based diamond-like compounds
  • zT

1. Introduction

The attractive capability of thermoelectric (TE) materials in actualizing the conversion between temperature gradient and electrical power makes them strong candidates for waste-heat recovery as well as solid-state refrigeration [1,2,3]. The practical and widespread application of TE technology strongly relies on the development of high-performance TE materials, where the TE performance of materials is evaluated by a dimensionless figure of merit, zT = α2σT/κ. The TE parameters α and σ are the Seebeck coefficient and electrical conductivity which, respectively, constitute the power factor, PF = α2σ, used to evaluate electrical conductivity characteristics. Parameter T is the Kelvin thermodynamic temperature, while κ refers to the total thermal conductivity, which is composed of two major contributions from the charge carriers (κE) and the lattice (κL), respectively. From a computational perspective, the most ideal high-performance TE material should have a large α, high σ as well as a low κ value. What cannot be avoided is the strong coupling between thermoelectric parameters regarding carrier concentration, such as when a high σ means low α and a high κE, limiting the improvement of zT [4,5,6]. In order to achieve high zT in traditional or emerging TE materials, various methods and approaches have been adopted to reduce the correlation between thermal and electrical properties [7,8,9], including defect engineering, size effects, alloying effect and high-entropy engineering, etc. In addition to achieving high performance, the exploration of alternative materials consists of earth-abundant and eco-friendly components to meet the sake of clean and environmental protection is also considered as one of the most popular approaches in TE field [10,11,12,13]. In recent years, diverse bulk TE materials have been widely researched, including liquid-like Cu2(S, Se, Te), silver-based chalcogenides, Sn(Te, S, Se), half-heuslers, etc. [14,15,16].
As an environmentally friendly and promising TE material without precious elements, the performance advantages of copper-based diamond-like TE compounds lie in their high Seebeck coefficient and low thermal conductivity [17,18,19,20,21]. Typical compounds include: Cu3SbSe4, with a high zT of 0.89 at 650 K [19]; Cu2SnSe3, with α of ~250 μV·K−1 in the temperature range of 300–700 K [22]; and CuInTe2, with a κL value as low as 0.3 W·m−1·K−1 [23], etc. Copper-based diamond-like TE compounds are a type of material that conforms to the concept of “phonon-glass electron-crystal” (PGEC) [17] materials, and their crystal structures are usually composed of two sublattices [23,24,25], in which one sublattice constitutes a conductive network, while the other acts as a thermal barrier and is sometimes also known as a charge reservoir. In 2011, Skoug et al. [24] summarized the significance of lone-pair electrons in the Cu-Sb-Se diamond-like system and demonstrated that the low intrinsic κL in compounds came from the interaction of lone-pair electrons with neighboring atoms. Moreover, Skoug et al. [25] also confirmed that the dominant Cu-Se network controlled the electric transport while the Sn orbitals only compensated the system for electrons. Several diamond-like crystal structures evolved from thecubic zincblende structure. Simultaneously, a series of advanced CBDL compounds have been discovered since 2009, most of which have presented outstanding TE properties. The timeline of maximum zTs and the temperature dependence of zTs for selected CBDL compounds. Taking the typical diamond-like compounds of Cu(In, Ga)Te2, Cu3SbSe4, and Cu2SnSe3 as examples, long-term efforts have shown that they all apparently have superior TE transport properties with high zTs that exceed one. For instance, Liu et al. [23] devised a pseudocubic crystal structure in CuInTe2 compounds; thus the highest zT of 1.24 was obtained in Ag-doped CuInTe2 compounds. A peak zT of 1.14 was attained in a Cu2Sn0.90In0.10Se3 compound at 850 K by replacing Sn sites with In. It is also worth noting that a high average zT (zT大道) 值对于整体 TE 转换效率是理想的。例如,高zT.max在 1 K 时为 67.873,并且zT大道的 0.73,以铜为单位实现0.70.3加语0.40.62 [26]周氏课题组最新研究[2728]创历史新高zT大道铜中的值分别为 0.73 和 0.773锑硒4-基和铜3SbS4分别基于材料,也可与其他最先进的TE化合物相媲美。因此,人们可以看到CBDL化合物有望成为TE应用的环保候选者,并实现优异的性能。

2. 铜基类金刚石热电化合物

CBDL化合物含有大量的家族成员,包括三元I-III-VI2黄胆石,I3–V–VI4斯坦尼特,我2-四至六3锡,第四纪I2-二-四-六4化合物,甚至大细胞铜10B2C4D13四面体和铜26P2Q6S32鞘石。所选典型CBDL化合物的TE特性,包括zT大道,zT.max,α2σ,κL和室温下的载流子浓度(N)。
在CBDL化合物中,铜加特2和CuInTe2是典型的Cu-III-VI2(III = 在,GA;VI = Se, S, Te) 黄铜矿结构化合物,在较高温度下表现出优异的热电性能。2012年,Plirdpring等人[29]在CuGaTe中取得了创纪录的1.4 zT2化合物在950 K,这表明它是TE应用领域的潜在材料。相比之下,发现CuInTe是2在1 K时拥有18.850的高zT[20]。在接下来的几年中,进行了大量研究以优化黄铜矿基材料的TE输运行为。通过缺陷工程,贝聿铭的团队在Ag掺杂CuGaTe中获得了1 K时的最大zT为0.7502化合物[40]并确定空位分散是改善TE运输行为的积极方法[80]。张等[26]合成了一种五元合金化合物Cu0.70.3加语0.40.62具有复杂的纳米应变域结构,具有优异的TE性能,在1 K时峰值zT为64.873,平均zT为<>.<> (zT大道) 的 0.73。通过合成 TiO2纳米纤维,Yang等人[36]在CuInTe中在1 K时实现了47.823的最大zT2基于TE化合物。此外,Chen等人[23]在Cu 0.750.2英特2复合。以上显示Cu(In,Ga)Te。2类金刚石TE材料具有更高的zT,可与其他先进的热电材料(如PbTe[81,82,83,84]和SnTe[8586,87])相媲美。此外,天然黄铜矿矿物CuFeS2 [52,535455],也被公认为先进的CBDL热电材料。值得注意的是,铜铁矿石2化合物是CBDL热电材料中罕见的典型n型TE化合物[88,89]。
3–V–VI4(V = Sb, P, As;VI = Se、S、Te)化合物具有四方金刚石样晶体结构,可近似地视为四种等效的锌混合物的叠加,其中Cu3锑硒4被认为是有前途的TE候选者,因为它的窄带隙为~0.3 eV [19274790]。用于提高铜的TE性能3锑硒4基于材料,Li等人[45]通过结合Sn掺杂和AgSb来协调调节电和热传输行为0.98通用 电气0.022Bo等人[1]成功地应用构型熵的概念优化了Cu的TE性能。3锑硒4,并且随着熵的增加,zT比初始阶段增加了约四倍。在他们的最新报告中,Zhou的小组[27]获得了优越的平均功率因数(聚苯乙烯大道) 的 19 μW·cm−1·K−2在300-723 K中,通过使用少量外来Al原子作为“稳定剂”来提供高空穴浓度,对载流子迁移率几乎没有影响。因此,结合降低的κ,创纪录的zT为1.4和zT大道的 0.72 在铜内获得3锑硒4基于化合物。还介绍了一种可以协调材料TE性能的新型非常规掺杂工艺。除了铜3锑硒43SbS4也是一个有前途的铜3–V–VI4–TE材料的类型[285051],并且已经证明其聚苯乙烯大道最高可达 16.1 μW·cm−1·K−2zT大道通过其优化,在 0 和 77 K 之间高达 400.773 [28]。
不同于Cu-III-VI2和铜3–V–VI4化合物,三元铜2-四至六3(IV = 锡、锇、铅;VI = Se,Te,S)化合物结晶在远离四方的更扭曲的结构中。铜23是一种具有多种结构相的CBDL化合物,已被成功发现和合成,包括立方相、四方相、正交相和单斜相,涉及22种变体[62]。Hu et al. [<>] 改进了 Cu 的 TE 传输行为23通过Mg掺杂增强其晶体对称性,并通过引入位错和纳米沉淀物来增强声子散射。同样,Ming等人[65]在Cu 1 K处获得了51.858的峰值zT20.820.182.7S0.3通过调节带状结构和引入多尺度缺陷进行复合。此外,秦等人[1]通过构建固有点缺陷(包括高密度堆积断层和内生长纳米针)来阻碍Cu中的中频和低频声子,从而在61 K处获得了创纪录的848.66 zT23化合物。除铜235一个2B7(A = 硅、锗、锡;B = S,Se,Te),具有中心对称空间群C2/m,也是一种扭曲的CBDL化合物,被认为具有非中心对称立方结构,相结晶为C中心[919293]。铜的不良特性5一个2B7化合物是它们代表类似金属的行为,例如Cu的载流子浓度和κ527在 300 K 时是 1.39 × 1021厘米−3和 15.1 W·m−1·K−1,分别[92]。同时,锌原子已被证明是增强铜的半导体性能的有效掺杂剂527化合物;Sturm等人[93]将锌掺杂剂引入铜527和铜527化合物,这也支持了这一结论。特别值得注意的是,锌掺杂的效果并不理想,化合物的TE性能仍有待进一步提高。
第四纪铜2-二-四-六4(II = 钴、锰、汞、镁、锌、镉、铁;IV = 锡,锗;VI = Se,S,Te)具有更复杂的四方结构的化合物也得到了广泛的研究。与三元CBDL化合物相比,季CBDL化合物的显著特征是它们具有更宽的带隙和相对较低的载流子迁移率[6870,76,94,9596979899]。取斜方晶石型铜2锰基镉4例如[95],它的带隙在初始阶段为~1.0 eV,而在Cu中仅转换为0.9 eV2.50.5GeS4通过调整Mn和Cu原子的比例。大细胞铜10B2C4D13 [100,101,102,103] (B = 银,铜;C = 钴、镍、锌、铜、锰、铁、汞、镉;Q = Sb, Bi, As;Q = Se, S)四面体具有更复杂的晶体结构。特色的“PGEC”框架也显示在Cu12某人4S13四面体,其中电传输由CuS控制4网络和热传递由由CuS组成的空腔多面体控制3和 SbS3组 [100]。2013年,Lu等人[102]在铜中0 K时实现了95.720的增强zT12某人4S13利用锌掺杂。此外,Li等人[103]在多孔Cu中在1 K处获得了15.723的高zT12某人4S13基于材料;成功制备了基于该材料的分段单支腿装置,当ΔT达到6 K时,实现了419%的高转换效率。26P2Q6S32 [104,105,106107,108] (P = V, Ta, Nb, W, Mo;Q = Ge,Sn,As,Sb)镭石是其他大细胞的例子,它们在一个晶体细胞中拥有66个原子,而四面体具有58个原子。因此,两者的共同特征是它们固有的低κ源于高结构不均匀性[108,109]。例如,Guilmeau的群[105]获得了0.4 W·m的最低κ−1·K−1在铜中的 300 K26V26S32鞘钝石,归因于鞘钝石的结构复杂性和Cu、V和Sn原子之间的质量波动。2018年,他们进一步阐明了与钝体固有低κ源头相关的潜在机制,以及反位点缺陷和S空位对载流子浓度的影响[105,106]。

This entry is adapted from the peer-reviewed paper 10.3390/ma16093512

This entry is offline, you can click here to edit this entry!
ScholarVision Creations