Researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors.
| TNBC Classification | Method of Analyses | Number of Patients | Subtypes | Abnormal Mechanisms | Relevant Markers | Therapeutic Strategies | Refs. |
|---|---|---|---|---|---|---|---|
| The Vanderbilt Subtype | K-means clustering | 586 | Basal-like 1 | Cell cycle Cell proliferation DNA damage response |
MYC, PIK3CA, CDK6, AKT2, KRAS, FGFR1, IGF1R, CCNE1, CDKN2A/B, BRCA2, PTEN, MDM2, RB1, TP53, KI67 | PARP inhibitors HDAC/DNMT inhibitors Natural-killer therapy Cisplatin, |
[20,24,25,26] |
| Basal-like 2 | EGFR, MET, NGF, Wnt/β-catenin, TP63, IGF1R signaling pathway Glycolysis Gluconeogenesis |
TP53, TP63, EGFR, MET, BRCA1, RB1, PTEN, CDKN2A, UTX | mTOR inhibitors Growth factor inhibitors (lapatinib, gefitinib, cetuximab, etc.) |
[20,24,27] | |||
| Immunomodulatory | Th1/2, IL-7, IL-12 signaling pathway | TP53, CTNNA1, DDX18, HUWE1, NFKBIA, APC, BRAF, MAP K4, RB1, CTLA4, PDL1 | PD1/PDL1/CTLA4 inhibitors Cisplatin PARP inhibitors |
[20,24] | |||
| Mesenchymal-like | Cell motility Cell proliferation Cell differentiation Wnt, TGFβ, Notch signaling pathway Epithelial-mesenchymal transition |
PTEN, RB1, TP53, PIK3CA, VEGFR2, PI3KCA | mTOR inhibitors Drugs targeting epithelial–mesenchymal transition Abl/Src inhibitor Dasatinib |
[20,24,28] | |||
| Mesenchymal stem-like | Cell motility Cell differentiation Growth factor signaling Epithelial–mesenchymal transition Low proliferation |
ABCA8, PROCR, ENG, ALDHA1, PER1, ABCB1, TERT2IP, BCL2, BMP2, THY, HOXA5, HOXA10, MEIS1, MEIS2, MEOX1, MEOX2, MSX1, BMP2, ENG, ITGAV, KDR, NGFR, NT5E, PDGFR, THY1, VCAM1, VEGFR2 | mTOR/MEK/PI3K inhibitors, Src antagonists Antiangiogenic drugs Abl/Src inhibitor Dasatinib |
[20,24] | |||
| Luminal androgen receptor | Steroid synthesis, porphyrin metabolism, Androgen/estrogen metabolism |
DHCR24, CD166, FASN, FKBP5, APOD, PIP, SPDEF, CLDN8 | Anti-AR therapy PI3K/CDK4/6 inhibitors |
[20,24,26,29] | |||
| The Baylor Subtype | Non-negative matrix factorization | 198 | Luminal androgen receptor | Steroid hormone biosynthesis Porphyrin and chlorophyll metabolism PPAR signaling pathway Androgen and estrogen metabolism Hormonale-mediated signaling |
TP53, PI3KCA, AKT1, ERBB2, ERBB4, CDK4/6, AR, MUC1, ER, CDH1, KRT7, KRT8, KRT18, KRT19, XBP1, FOXA1 | Anti-AR/MUC1 therapy | [21,30,31,32,33,34] |
| Mesenchymal | Cell motility Epithelial–mesenchymal transition Focal adhesion TGF-β signaling pathway Adipocytokine signaling pathway |
PIK3CA, PTEN, STAT3, IGF1, prostaglandin, TGF-β, Wnt, β-catenin, PDGFRα, c-Kit, ABC transporter | TKI/RAS/mTOR inhibitor Growth factor inhibitors |
[21,30,31,32,33] | |||
| Basal-like immunosuppressed | Mitotic cell cycle Mitotic prometaphase M phase of mitotic cell cycle DNA replication DNA repair Immune response Innate immune response |
VTCN1, TP53, CENPF, BUB1, PRC1, VTCN1, MS4A6A, MTBP, FGFR2, BARD1, RNASE6 |
VTCN1 inhibition | [21,31] | |||
| Basal-like immune-activated | Cytokine–cytokine receptor interaction T cell receptor signaling pathway B cell receptor signaling pathway Chemokine signaling pathway NF-kB signaling pathway |
CCR2, CXCL13, CXCL11, CD1C, CXCL10, CCL5, STAT | Drugs targeting stat signal transduction molecules and cytokines | [21,31,35] | |||
| The French Subtype | Fuzzy clustering | 194 | Cluster 1 | Luminal androgen receptor enriched | AR, Hsp90, PI3K, FGFR4, TTN, TNR, PKHD1L1, SPTA1, NCKAP5, COL15A1, ANKRD11, MYLK | Anti-AR therapy | [36,37,38] |
| Cluster 2 | Basal-like with low immune response High M2-like macrophages High pro-tumorigenic Low anti-tumor immune response |
CCL2, CCL5, CCL18, CCL10, CXCL22, IL4, IL8, IL10, IL13, TGFβ1, CD206, CD204, VEGF, Aginase1, PIK3CA, NF1, AKT1, FBN3, ABCC1, DNHD1 | M2 inhibition Repolarization of M2 into M1 macrophages |
[20,38,39,40,41,42,43,44,45] | |||
| Cluster 3 | Basal-enriched High immune response Low M2-like macrophages Low pro-tumorigenic High anti-tumor immune response |
IL-1β, IL-6, IL-12, IL-23,CXCL9, TNF-α, CCL2, IFNγ, GSF10, DNAH1, CDH23, AHNAK2, GTF3C1 | Repolarization of M2 into M1 macrophages | [38,41,45] |
| Approach | Class of Agents | Examples of Therapy | Mechanism of Action | Refs. |
|---|---|---|---|---|
| Neoadjuvant | Anthracycline + Taxane | Doxorubicin + Cyclophosphamide + Paclitaxel Epirubicin + Cyclophosphamide + Nab-paclitaxel |
Inhibition of DNA and RNA synthesis Inhibition of topoisomerase II enzyme Generation of reactive oxygen species (ROS) Stabilization of microtubules |
[49,51] |
| Fluoropyrimidine + Taxane | Capecitabine + Docetaxel | |||
| Fluoropyrimidine + Epothilone | Capecitabine + Ixabepilone | |||
| Adjuvant | Anthracycline + Taxane | Doxorubicin + Cyclophosphamide + Docetaxel | [49,52] |
| Class of Agents | Examples of Therapy | Mechanism of Action | Refs. |
|---|---|---|---|
| PD-1 and PD-L1 inhibitors | Pembrolizumab + Paclitaxel Doxorubicin + Cyclophosphamide Pembrolizumab + Paclitaxel + Carboplatin Durvalumab + Nab-paclitaxel Atezolizumab + Nab-paclitaxel Atezolizumab + Nab-paclitaxel + Carboplatin |
Reactivation of the anti-tumor immune response PD-1/PD-L1 complex formation inhibition |
[55] |
| Platinum-based therapy | Carboplatin + Eribulin Gemcitabine + Carboplatin + Iniparib Carboplatin + Bevacizumab Cisplatin + Paclitaxel + Everolimus Paclitaxel + Carboplatin |
Double-strand DNA break Apoptosis initiation |
[56,57,58] |
| Cell cycle inhibitors | Trilaciclib, etoposide, abemaciclib, prexasertib | Activate the spindle assembly/mitotic checkpoint Prolonged mitotic arrest Cell death initiation |
[59] |
| Angiogenesis inhibitors | Cisplatin + Bevacizumab Anlotinib, apatinib, afatinib, lenvatinib, erlotinib, famitinib, pyrotinib |
Blocking new blood vessel formation Tumor growth inhibition VEGF signaling pathway disruption |
[60] |
| PI3K/AKT/mTOR inhibitors | Rapamycin, ipatasertip, buparlisib, pictilisib, alpelisib | Cancer cells migration and invasion inhibition Apoptosis initiation |
[61,62] |
| PARP inhibitors | Olaparib + Carboplatin + Paclitaxel Veliparib + Carboplatin Cisplatin + Rucaparib Veliparib, niraparib, talazoparib |
Double-strand DNA break Cell death initiation Base excision repair Relax/condense chromatin bind nucleosom PARylate H1/H2B |
[63] |
| EGFR inhibitors | Bintrafusp Alfa, dasatinib, geftinib, sorafenib, nimotuzumab, panitumumab, erlotinib, osimertinib | Cell death initiation Inhibition of cancer cell proliferation Blocking dimerization of receptors, auto-phosphorylation and downstream signaling Inducing receptor internalization, degradation and stable downregulation |
[64] |
| Androgen receptor (AR) antagonists | Bicalutamide, enzalutamide, abiraterone, palbociclib | Decrease in cancer cell viability G1 phase arrest Apoptosis induction |
[30,65] |
| Antibody drug conjugates | Sacituzumab govitecan, Ladiratuzumab vedotin, Trastuzumab deruxtecan |
Cell growth and migration inhibition Binding to the topoisomerase in DNA replication inhibition S-phase-specific cell death initiation DNA damage |
[66] |
This entry is adapted from the peer-reviewed paper 10.3390/ijms24043245