Classification and Applications of 2D Xenes: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: , , , , , , , , ,

Single-element-based 2D materials (Xenes) have garnered tremendous interest. At present, 16 kinds of Xenes (silicene, borophene, germanene, phosphorene, tellurene, etc.) have been explored, mainly distributed in the third, fourth, fifth, and sixth main groups. Although two Xenes (aluminene and indiene) have not been synthesized due to the limitations of synthetic methods and the stability of Xenes, other Xenes have been successfully created via elaborate artificial design and synthesis. Elemental 2D materials show potential applications in various fields, including spintronics, electronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines.

  • elemental two-dimensional materials
  • allotropic structures
  • synthesis methods
  • applications

1. Introduction

Graphene, initially isolated from graphite via mechanical exfoliation, possesses a layered honeycomb structure and exhibits fascinating electrical and thermal properties[1]. Subsequently, two-dimensional (2D) materials, including elemental monolayers (Xenes)[2], transition metal chalcogenides (TMCs)[3][4], oxides[5], halides[6][7], and carbides (MXenes)[8][9], have shown intriguing properties, such as high carrier mobility[10], layer-dependent band structures and magnetic properties[6][11][12], nontrivial topology[13][14][15][16], valleytronics[17], etc. Therefore, 2D materials have become promising candidates for various applications relating to next-generation technology, including spintronics, superconducting, nanoelectronics, nanosensing, etc.
Over the past few years, many studies have focused on searching for other 2D Xenes with distinctive and exciting properties beyond graphene (Figure 1a)[18][19]. The successful experimental realization of non-graphene 2D analogs (silicene and phosphorene) sparked a continuous expansion of the list of elements with atomically thin forms[20][21]. Sixteen elemental-main-group 2D Xenes have been predicted theoretically or created experimentally to date (Figure 1b)[22][23][24][25][26][27][28][29][30][31][32]. To the best of our knowledge, except aluminene and indiene, the other 13 non-graphene Xenes have been experimentally obtained (Figure 1c). Currently, monolayer or few-layer Xenes can be created using mechanical exfoliation, liquid phase exfoliation, and epitaxial growth methods[1][12][22][33].
Figure 1. Development of 2D Xenes. (a) Statistics diagram of the number of research articles on non-graphene 2D Xenes from 2010 to 2021. (b) Overview of 2D analogs of main-group elements, explored using either experimental or theoretical routes. The elements with no signs have not been explored to date. (c) The timeline of the experimental creation of 2D Xenes.

2. Classification of 2D Xenes

The material properties (electronic, optical, chemical, etc.) of 2D Xenes are not only determined by their chemical compositions but are also strongly associated with the atom arrangement in the lattice. Due to the preferred orbital hybridization of various elements in the main group, 2D Xenes have been theoretically predicted or experimentally verified to possess allotropes with diverse crystal lattices. The reported 16 Xenes are classified into main groups, including group III (borophene, aluminene, gallenene, indiene, and thallene); group IV (graphene, silicene, germanene, stanene, and plumbene); group V (phosphorene, arsenene, antimonene, and bismuthene); and group VI (selenene, and tellurene).
In group III elements, theoretical calculations have predicted many allotropes of 2D borophene (B1−νν; ν represents the vacancy concentration) with various vacancy concentrations and 2D aluminene with various forms[34][35][36][37]. However, only two allotropes of 2D gallenene (buckled and planar structures) have been successfully exfoliated[29]. Similarly, 2D indiene has been predicted to possess buckled, planar, and puckered geometry[38]. Among group IV elements, the favorable hybridization state is somewhere between sp2 and sp3, leading to various 2D allotropic structures, such as planar honeycomb graphene/stanene[39][40][41], buckled silicene/germanene/stanene/plumbene[25][30][42][43], pha-/penta-graphene[44][45], MoS2-like stanene[46], and honeycomb dumbbell (HD)/large honeycomb dumbbell (LHD) silicene/germanene[46]. Different from group III and group IV, all the elements in group V prefer the sp3 hybridization state to create buckled (α-form) or puckered (β-form) lattices[24][47][48][49][50][51][52]. Meanwhile, a γ-form and a δ-form of arsenene have also been proposed[53]. In group VI, four different allotropic forms of tellurene have been predicted[27][54], while Se can form a chain, a ring, or a square structure[54]. To verify the atomic structures of various elemental Xenes, epitaxial growth has been attempted on many substrates, analogous to the epitaxial growth of graphene. The suitable substrates for the epitaxial growth of various non-graphene Xenes (Figure 2) reveal that the substrate choices affect whether the synthesis can succeed in addition to an allotropic lattice structure.
Figure 2. Summary of the successful substrate choices for the epitaxial growth of various non-graphene 2D Xenes. Each color represents one kind of Xenes.

3. Applications of 2D Xenes

2D Xenes possess various physical and chemical properties, such as flexibility, layer-dependent semiconducting, high carrier mobility, molecule and light sensitivity, topologically nontrivial band structures, etc. In order to utilize 2D Xenes more effectively, surface modifications become particularly important to tune the properties of 2D Xenes. 2D Xenes have become promising for applications in different fields, such as spintronics, electronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines. For instance, the FET of acene-type graphene nanoribbons exhibits excellent semiconductor characteristics with an on/off ratio of 88[55]. To enhance the mid-infrared (MIR) absorption of graphene, the localized surface plasmon resonance of B-doped Si quantum dots (QDs) results in a QD/graphene hybrid photodetector with ultrahigh responsivity, gain, and specific detectivity in the UV-to-MIR region[56]. A 2D bismuthene/Si(111) heterostructure exhibits excellent photodetection performance in the Vis-MIR region due to the promoted generation and transportation of charge carriers in the heterojunction[57]. Solution-exfoliated black phosphorene flakes, as an electron transport layer, can enhance the performance of organic solar cells[58]. In addition, layered black phosphorene exhibits the selective detection of methanol[59]. The thermoelectric power (S) in black phosphorene can be effectively controlled with ion-gating. In the hole-depleted state, the S of black phosphorene can reach +510 μV/K at 210 K, much higher than the bulk single crystal value of +340 μV/K at 300 K[60]. Under the proper electron-doping and biaxial tensile strain, buckled arsenene shows superconductivity with a high Tc of 30.8 K[61]. Iodine-decorated stanene exhibits a topologically nontrivial band structure with a larger gap of ~320 meV than that of pristine stanene (~100 meV)[62]. Graphene/Pt(111) surfaces can cause CO adsorption/desorption and CO oxidation surface reactions[63]. MoS2/graphene hybrids decorated by CdS nanocrystals can act as high-performance photocatalysts for H2 evolution under visible light irradiation[64]. Moreover, 2D Xenes are also regarded as promising agents for biomedical applications[65]. For example, an ultrathin bismuthene can act as a sensing platform to detect microRNA with a detection limit of 60 PM[66]. Polyethylene-coated antimonene quantum dots can be used as photothermal agents with a high photothermal conversion efficacy of 45.5% for photothermal therapy in cancer theranostics[67]. Overall, thanks to surface modifications, 2D Xenes show great potential for applications in plenty of fields.

This entry is adapted from the peer-reviewed paper 10.3390/molecules28010200

References

  1. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.‑e.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
  2. Mannix, A.J.; Kiraly, B.; Hersam, M.C.; Guisinger, N.P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.
  3. Kis, A. Graphene is not alone. Nat. Nanotechnol. 2012, 7, 683.
  4. Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F. Progress, challenges, and opportunities in two‑dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.
  5. Xiao, X.; Song, H.; Lin, S.; Zhou, Y.; Zhan, X.; Hu, Z.; Zhang, Q.; Sun, J.; Yang, B.; Li, T. Scalable salt‑templated synthesis of two‑dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.
  6. Huang, B.; Clark, G.; Navarro‑Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Layer‑dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
  7. Burch, K.S.; Mandrus, D.; Park, J.‑G. Magnetism in two‑dimensional van der Waals materials. Nature 2018, 563, 47–52.
  8. Zhang, Y.‑Z.; El‑Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.
  9. Zhang, C.J.; McKeon, L.; Kremer, M.P.; Park, S.‑H.; Ronan, O.; Seral‑Ascaso, A.; Barwich, S.; Coileáin, C.Ó.; McEvoy, N.; Nerl, H.C. Additive‑free MXene inks and direct printing of micro‑supercapacitors. Nat. Commun. 2019, 10, 1795.
  10. Novoselov, K.; Mishchenko, O.A.; Carvalho, O.A.; Castro Neto, A. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
  11. Li, L.; Kim, J.; Jin, C.; Ye, G.J.; Qiu, D.Y.; Da Jornada, F.H.; Shi, Z.; Chen, L.; Zhang, Z.; Yang, F. Direct observation of the layer‑dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.
  12. Ma, Y.; Shao, X.; Li, J.; Dong, B.; Hu, Z.; Zhou, Q.; Xu, H.; Zhao, X.; Fang, H.; Li, X. Electrochemically exfoliated platinum dichalcogenide atomic layers for high‑performance air‑stable infrared photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 8518–8527.
  13. Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.
  14. Konig, M.; Wiedmann, S.; Brune, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.‑L.; Zhang, S.‑C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.
  15. Kane, C.L.; Mele, E.J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.
  16. Liu, C.‑C.; Feng, W.; Yao, Y. Quantum spin Hall effect in silicene and two‑dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.
  17. Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
  18. Castellanos‑Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photonics 2016, 10, 202–204.
  19. Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene‑like two‑dimensional materials. Chem. Rev. 2013, 113, 3766–3798.
  20. Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Ealet, B.; Le Lay, G. Graphene‑like silicon nanoribbons on Ag (110): A possible formation of silicene. Appl. Phys. Lett. 2010, 96, 183102.
  21. Dávila, M.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two‑dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.
  22. Mannix, A.J.; Zhou, X.‑F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R. Synthesis of borophenes: Anisotropic, two‑dimensional boron polymorphs. Science 2015, 350, 1513–1516.
  23. Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field‑effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.
  24. Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band‑gap transitions. Angew. Chem. 2015, 127, 3155–3158.
  25. Zhu, F.‑F.; Chen, W.‑J.; Xu, Y.; Gao, C.‑L.; Guan, D.‑D.; Liu, C.‑H.; Qian, D.; Zhang, S.‑C.; Jia, J.‑F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.
  26. Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high‑temperature quantum spin Hall material. Science 2017, 357, 287–290.
  27. Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.‑H. Multivalency‑driven formation of Te‑based monolayer materials: A combined first‑principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101.
  28. Qin, J.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L.; Charnas, A.; Zemlyanov, D.Y.; Xu, C.‑Y.; Xu, X.; Wu, W. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222–10229.
  29. Kochat, V.; Samanta, A.; Zhang, Y.; Bhowmick, S.; Manimunda, P.; Asif, S.A.S.; Stender, A.S.; Vajtai, R.; Singh, A.K.; Tiwary, C.S. Atomically thin gallium layers from solid‑melt exfoliation. Sci. Adv. 2018, 4, e1701373.
  30. Yuhara, J.; He, B.; Matsunami, N.; Nakatake, M.; Le Lay, G. Graphene’s latest cousin: Plumbene epitaxial growth on a “nano WaterCube”. Adv. Mater. 2019, 31, 1901017.
  31. Liu, G.; Xu, S.‑G.; Ma, Y.; Shao, X.; Xiong, W.; Wu, X.; Zhang, S.; Liao, C.; Chen, C.; Wang, X. Arsenic Monolayers Formed by Zero‑Dimensional Tetrahedral Clusters and One‑Dimensional Armchair Nanochains. ACS Nano 2022, 16, 17087–17096.
  32. Yeoh, K.H.; Yoon, T.L.; Ong, D.S.; Lim, T.L. First‑principles studies on the superconductivity of aluminene. Appl. Surf. Sci. 2018, 445, 161–166.
  33. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K. High-yield production of graphene by liquid‑phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.
  34. Yuan, J.; Yu, N.; Xue, K.; Miao, X. Stability, electronic and thermodynamic properties of aluminene from first‑principles calculations. Appl. Surf. Sci. 2017, 409, 85–90.
  35. Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B.I. Two‑dimensional boron monolayers mediated by metal substrates. Angew. Chem. 2015, 127, 13214–13218.
  36. Liu, Y.; Penev, E.S.; Yakobson, B.I. Probing the synthesis of two‑dimensional boron by first‑principles computations. Angew. Chem. Int. Ed. 2013, 52, 3156–3159.
  37. Huang, Y.; Shirodkar, S.N.; Yakobson, B.I. Two‑dimensional boron polymorphs for visible range plasmonics: A first‑principles exploration. J. Am. Chem. Soc. 2017, 139, 17181–17185.
  38. Singh, D.; Gupta, S.K.; Lukačević, I.; Sonvane, Y. Indiene 2D monolayer: A new nanoelectronic material. RSC Adv. 2016, 6, 8006–8014.
  39. Deng, J.; Xia, B.; Ma, X.; Chen, H.; Shan, H.; Zhai, X.; Li, B.; Zhao, A.; Xu, Y.; Duan, W. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 2018, 17, 1081–1086.
  40. Ren, W.; Cheng, H.‑M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730.
  41. Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio‑Roy, M.; Zhang, B.; Wu, X.; Berger, C.; De Heer, W.A. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 2010, 5, 727–731.
  42. Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; Hofer, W.A. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.
  43. Li, L.; Lu, S.Z.; Pan, J.; Qin, Z.; Wang, Y.q.; Wang, Y.; Cao, G.y.; Du, S.; Gao, H.J. Buckled germanene formation on Pt (111). Adv. Mater. 2014, 26, 4820–4824.
  44. Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta‑graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372–2377.
  45. Wang, Z.; Zhou, X.‑F.; Zhang, X.; Zhu, Q.; Dong, H.; Zhao, M.; Oganov, A.R. Phagraphene: A low‑energy graphene allotrope composed of 5–6–7 carbon rings with distorted Dirac cones. Nano Lett. 2015, 15, 6182–6186.
  46. Matusalem, F.; Marques, M.; Teles, L.K.; Bechstedt, F. Stability and electronic structure of two‑dimensional allotropes of group‑IV materials. Phys. Rev. B 2015, 92, 045436.
  47. Guan, J.; Zhu, Z.; Tománek, D. Tiling phosphorene. ACS Nano 2014, 8, 12763–12768.
  48. Wu, X.; Shao, Y.; Liu, H.; Feng, Z.; Wang, Y.L.; Sun, J.T.; Liu, C.; Wang, J.O.; Liu, Z.L.; Zhu, S.Y. Epitaxial growth and air‑stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.
  49. Lu, Y.; Xu, W.; Zeng, M.; Yao, G.; Shen, L.; Yang, M.; Luo, Z.; Pan, F.; Wu, K.; Das, T. Topological properties determined by atomic buckling in self‑assembled ultrathin Bi (110). Nano Lett. 2015, 15, 80–87.
  50. Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.
  51. Aktürk, E.; Aktürk, O.Ü.; Ciraci, S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys. Rev. B 2016, 94, 014115.
  52. Kamal, C.; Ezawa, M. Arsenene: Two‑dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 2015, 91, 085423.
  53. Mardanya, S.; Thakur, V.K.; Bhowmick, S.; Agarwal, A. Four allotropes of semiconducting layered arsenic that switch into a topological insulator via an electric field: Computational study. Phys. Rev. B 2016, 94, 035423.
  54. Xian, L.; Paz, A.P.; Bianco, E.; Ajayan, P.M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.
  55. Sakaguchi, H.; Song, S.; Kojima, T.; Nakae, T. Homochiral polymerization‑driven selective growth of graphene nanoribbons. Nat. Chem. 2017, 9, 57–63.
  56. Ni, Z.; Ma, L.; Du, S.; Xu, Y.; Yuan, M.; Fang, H.; Wang, Z.; Xu, M.; Li, D.; Yang, J. Plasmonic silicon quantum dots enabled high-sensitivity ultra-broadband photodetection of graphene‑based hybrid phototransistors. ACS Nano 2017, 11, 9854–9862.
  57. Dang, Z.; Wang, W.; Chen, J.; Walker, E.S.; Bank, S.R.; Akinwande, D.; Ni, Z.; Tao, L. Vis‑NIR photodetector with microsecond response enabled by 2D bismuth/Si (111) heterojunction. 2D Mater. 2021, 8, 035002.
  58. Lin, S.; Liu, S.; Yang, Z.; Li, Y.; Ng, T.W.; Xu, Z.; Bao, Q.; Hao, J.; Lee, C.S.; Surya, C. Solution‑processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Adv. Funct. Mater. 2016, 26, 864–871.
  59. Mayorga‑Martinez, C.C.; Sofer, Z.; Pumera, M. Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 2015, 54, 14317–14320.
  60. Saito, Y.; Iizuka, T.; Koretsune, T.; Arita, R.; Shimizu, S.; Iwasa, Y. Gate‑tuned thermoelectric power in black phosphorus. Nano Lett. 2016, 16, 4819–4824.
  61. Kong, X.; Gao, M.; Yan, X.‑W.; Lu, Z.‑Y.; Xiang, T. Superconductivity in electron‑doped arsenene. Chin. Phys. B 2018, 27, 046301.
  62. Xu, Y.; Yan, B.; Zhang, H.‑J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S.‑C. Large‑gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.
  63. Yao, Y.; Fu, Q.; Zhang, Y.; Weng, X.; Li, H.; Chen, M.; Jin, L.; Dong, A.; Mu, R.; Jiang, P. Graphene cover‑promoted metal‑catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.
  64. Chang, K.; Mei, Z.; Wang, T.; Kang, Q.; Ouyang, S.; Ye, J. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.
  65. Tao, W.; Kong, N.; Ji, X.; Zhang, Y.; Sharma, A.; Ouyang, J.; Qi, B.; Wang, J.; Xie, N.; Kang, C.; et al. Emerging two‑dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891–2912.
  66. Xue, T.; Bongu, S.R.; Huang, H.; Liang, W.; Wang, Y.; Zhang, F.; Liu, Z.; Zhang, Y.; Zhang, H.; Cui, X. Ultrasensitive detection of microRNA using a bismuthene‑enabled fluorescence quenching biosensor. Chem. Commun. 2020, 56, 7041–7044.
  67. Tao, W.; Ji, X.; Xu, X.; Islam, M.A.; Li, Z.; Chen, S.; Saw, P.E.; Zhang, H.; Bharwani, Z.; Guo, Z. Antimonene quantum dots: Synthesis and application as near‑infrared photothermal agents for effective cancer therapy. Angew. Chem. 2017, 129, 12058–12062.
More
This entry is offline, you can click here to edit this entry!
ScholarVision Creations