The Formyl Peptide Receptors: History
Please note this is an old version of this entry, which may differ significantly from the current revision.

The formyl peptide receptors, abbreviated as FPRs in humans, are pattern recognition receptors (PRRs) with central roles in host defense and inflammation.

  • formyl peptide receptors
  • FPR1
  • FPR2

1. Introduction

The formyl peptide receptors (FPRs) are seven-pass, transmembrane G-protein coupled receptors (GPCRs) crucially involved in the inflammatory response. Although their roles in the response to infection and sterile peripheral inflammation have been extensively studied, their function in the central nervous system (CNS) and neuroinflammatory responses has only gradually become apparent [1][2][3][4][5].

2. The Formyl Peptide Receptors

The formyl peptide receptors, abbreviated as FPRs in humans, are pattern recognition receptors (PRRs) with central roles in host defense and inflammation [1][6][7][8]. Although expressed in a number of different cell types, the actions of FPRs have primarily been investigated in cells of myeloid origin; human FPR1 and FPR2 were originally identified in neutrophils and monocytes, while FPR3 was only detected in the latter [9]. These receptors have a diverse array of functions, from eliciting cellular adhesion and directed migration of recruited immune cells through chemotaxis, to granule release and superoxide formation [7][10][11]. The importance of these receptors in non-myeloid cell types has been reported more recently [12][13][14].
This receptor class was initially identified and named based on their ability to bind N-formylated peptides such as N-formylmethionine (fMet), produced through the degradation of both bacteria and mitochondria [15][16]. The ability to recognize N-formyl peptides, including the potent FPR1 agonist and chemotactic agent N-formyl-methionyl-leucyl-phenylalanine (fMLF), led to the conclusion that FPRs act as PRRs [3][17]. Following their original description, accumulating evidence has shown FPRs to bind to a diverse and continually expanding repertoire of ligands, including not only N-formyl peptides, but also non-formyl peptides of both microbial and host origin, synthetic small molecules, and eicosanoid lipids (Table 1). These molecules all bind to one or several FPRs and have been reviewed in detail previously [2][7][18].
Table 1. Selective ligands of FPR1 and FPR2. Molecules are broadly grouped based on their structure and origins. Binding selectivity for each ligand has been provided. Available in vitro pKD, pEC50 and pIC50 values for ligand interactions with the human FPRs are included. Data has been adapted, compiled and condensed from previously available reviews [7][18][19]. n.d.; values not determined for the human receptors.
There are three genes which encode for human FPRs: FPR1, FPR2, and FPR3. All three proteins share similar sequence homology and are encoded by genes clustered together on chromosome 19q13.3 in the human genome (Gao et al., 1998; Yi et al., 2007). Of these receptors, FPR1 and FPR2 share a particularly high overall gene sequence homology, with some overlapping functionality [2]. Comparatively, the genes which encode FPRs vary considerably in number between different species. For example, mice have eight known members of the FPR gene family on chromosome 17A3.2, denoted as ‘Fprs’. Despite the discrepancy in receptor numbers across the two species, several receptors share similar functionality, including FPR1/Fpr1, both of which are known to respond to host infection [54] and regulate chemotaxis [10][55][56]. These similarities extend to human FPR2 as well, although murine functionality is encoded by two receptors which work in synergy to carry out comparable functions: Fpr2/3 [57][58]. Highlighting their parallels, amino acid BLAST alignment confirms that these murine receptors display 76% (Fpr2) and 74% (Fpr3) identity alongside 85% (Fpr2) and 81% (Fpr3) homology to human FPR2, while Fpr2 and Fpr3 display 82% identity and 88% homology to each other.
For many years, the crystalline structure of these receptors remained elusive. Instead, structure simulation and molecular modeling [59], computer-aided ligand docking [60][61] and site-directed mutagenesis [62][63] had led to the identification of amino acids within both FPR1 and FPR2 responsible for receptor interactions with several different molecules [7]. More recently, the crystalline structure for FPR1 bound to the pan-formyl-peptide agonist fMLFII was reported with a resolution of 3.2 Å [64]. Further, two independent research groups reported crystalline structures for human FPR2 bound to the hexapeptide WKYMVm—a strong agonist for the receptor—with resolutions of 2.8 Å and 3.17 Å, respectively [8][65]. Zhaung and colleagues expanded further on the crystalline structure of FPR2, reporting interactions with several other known receptor agonists, fMLFII, the anti-inflammatory peptide CGEN-855A, and the synthetic anti-inflammatory small molecule Compound-43 with 3.1, 2.9 and 3.0 Å resolution, respectively [64]. Interestingly, structural comparison of these receptor-agonist conformations indicate the presence of a conserved receptor activation mechanism, suggesting that despite the ligands’ structural differences, receptor stimulation occurs due to similar molecular interactions. However, while these studies provide novel insights into the binding mechanisms of different ligands, it is crucial that the development of FPR crystalline structures continues, including interactions with receptor antagonists like cyclosporin H and WRW4, alongside pathogenic ligands such as serum amyloid A and β-amyloid (Aβ). In terms of the latter, cryo-electron microscopy recently helped elucidate the interaction between Aβ1-42 and FPR2 [66]. However, follow-up research will be important to decipher whether different Aβ formulations—such as monomers, oligomers, or fibrils—display different binding characteristics with this promiscuous receptor.
In summary, identification of novel receptor binding pockets for both pro-resolution and disease associated ligands may prove crucial for the future development of improved FPR associated therapeutics.

This entry is adapted from the peer-reviewed paper 10.3390/life12122009

References

  1. Wickstead, E.S.; Karim, H.A.; Manuel, R.E.; Biggs, C.S.; Getting, S.J.; McArthur, S. Reversal of β-Amyloid-Induced Microglial Toxicity In Vitro by Activation of Fpr2/3. Oxid. Med. Cell. Longev. 2020, 2020, 2139192.
  2. Ye, R.D.; Boulay, F.; Wang, J.M.; Dahlgren, C.; Gerard, C.; Parmentier, M.; Serhan, C.N.; Murphy, P.M. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family. Pharmacol. Rev. 2009, 61, 119–161.
  3. Hartt, J.K.; Barish, G.; Murphy, P.M.; Gao, J.L. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, A second mouse neutrophil FPR. J. Exp. Med. 1999, 190, 741–747.
  4. Wickstead, E.S.; Irving, M.A.; Getting, S.J.; McArthur, S. Exploiting formyl peptide receptor 2 to promote microglial resolution: A new approach to Alzheimer’s disease treatment. FEBS J. 2021, 289, 1801–1822.
  5. McArthur, S.; Yazid, S.; Christian, H.; Sirha, R.; Flower, R.; Buckingham, J.; Solito, E. Annexin A1 regulates hormone exocytosis through a mechanism involving actin reorganization. FASEB J. 2009, 23, 4000–4010.
  6. McArthur, S.; Juban, G.; Gobbetti, T.; Desgeorges, T.; Theret, M.; Gondin, J.; Toller-Kawahisa, J.E.; Reutelingsperger, C.P.; Chazaud, B.; Perretti, M.; et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J. Clin. Investig. 2020, 130, 1156–1167.
  7. He, H.Q.; Ye, R.D. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017, 22, 455.
  8. Zhuang, Y.; Liu, H.; Edward Zhou, X.; Kumar Verma, R.; de Waal, P.W.; Jang, W.; Xu, T.-H.; Wang, L.; Meng, X.; Zhao, G.; et al. Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nat. Commun. 2020, 11, 885.
  9. Durstin, M.; Gao, J.L.; Tiffany, H.L.; McDermott, D.; Murphy, P.M. Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes. Biochem. Biophys. Res. Commun. 1994, 201, 174–179.
  10. Kwon, W.Y.; Suh, G.J.; Jung, Y.S.; Park, S.M.; Oh, S.; Kim, S.H.; Lee, A.R.; Kim, J.Y.; Kim, H.; Kim, K.A.; et al. Circulating mitochondrial N-formyl peptides contribute to secondary nosocomial infection in patients with septic shock. Proc. Natl. Acad. Sci. USA 2021, 118, e2018538118.
  11. Liang, W.; Chen, K.; Gong, W.; Yoshimura, T.; Le, Y.; Wang, Y.; Wang, J.M. The Contribution of Chemoattractant GPCRs, Formylpeptide Receptors, to Inflammation and Cancer. Front. Endocrinol. 2020, 11, 17.
  12. Cattaneo, F.; Castaldo, M.; Parisi, M.; Faraonio, R.; Esposito, G.; Ammendola, R. Formyl Peptide Receptor 1 Modulates Endothelial Cell Functions by NADPH Oxidase-Dependent VEGFR2 Transactivation. Oxid. Med. Cell. Longev. 2018, 2018, 2609847.
  13. Pessolano, E.; Belvedere, R.; Novizio, N.; Filippelli, A.; Perretti, M.; Whiteford, J.; Petrella, A. Mesoglycan connects Syndecan-4 and VEGFR2 through Annexin A1 and formyl peptide receptors to promote angiogenesis in vitro. FEBS J. 2021, 288, 6428–6446.
  14. Lee, C.; Kim, J.; Han, J.; Oh, D.; Kim, M.; Jeong, H.; Kim, T.-J.; Kim, S.-W.; Kim, J.N.; Seo, Y.-S.; et al. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat. Commun. 2022, 13, 578.
  15. Panaro, M.A.; Acquafredda, A.; Sisto, M.; Lisi, S.; Maffione, A.B.; Mitolo, V. Biological Role of the N-Formyl Peptide Receptors. Immunopharmacol. Immunotoxicol. 2006, 28, 103–127.
  16. Lee, Y.B.; Nagai, A.; Kim, S.U. Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 2002, 69, 94–103.
  17. Showell, H.J.; Freer, R.J.; Zigmond, S.H.; Schiffmann, E.; Aswanikumar, S.; Corcoran, B.; Becker, E.L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J. Exp. Med. 1976, 143, 1154–1169.
  18. Cuomo, P.; Papaianni, M.; Capparelli, R.; Medaglia, C. The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int. J. Mol. Sci. 2021, 22, 3706.
  19. Weiß, E.; Kretschmer, D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol. 2018, 39, 815–829.
  20. Quehenberger, O.; Prossnitz, E.R.; Cavanagh, S.L.; Cochrane, C.G.; Ye, R.D. Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors. J. Biol. Chem. 1993, 268, 18167–18175.
  21. Koo, C.; Lefkowitz, R.J.; Snyderman, R. The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem. Biophys. Res. Commun. 1982, 106, 442–449.
  22. Southgate, E.L.; He, R.L.; Gao, J.-L.; Murphy, P.M.; Nanamori, M.; Ye, R.D. Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils. J. Immunol. 2008, 181, 1429–1437.
  23. He, H.-Q.; Liao, D.; Wang, Z.-G.; Wang, Z.-L.; Zhou, H.-C.; Wang, M.-W.; Ye, R.D. Functional characterization of three mouse formyl peptide receptors. Mol. Pharmacol. 2013, 83, 389–398.
  24. Bufe, B.; Schumann, T.; Kappl, R.; Bogeski, I.; Kummerow, C.; Podgórska, M.; Smola, S.; Hoth, M.; Zufall, F. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: A new mechanism for sensing pathogens. J. Biol. Chem. 2015, 290, 7369–7387.
  25. Rabiet, M.-J.; Huet, E.; Boulay, F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur. J. Immunol. 2005, 35, 2486–2495.
  26. Seki, T.; Fukamizu, A.; Kiso, Y.; Mukai, H. Mitocryptide-2, a neutrophil-activating cryptide, is a specific endogenous agonist for formyl-peptide receptor-like 1. Biochem. Biophys. Res. Commun. 2011, 404, 482–487.
  27. Lind, S.; Gabl, M.; Holdfeldt, A.; Mårtensson, J.; Sundqvist, M.; Nishino, K.; Dahlgren, C.; Mukai, H.; Forsman, H. Identification of Residues Critical for FPR2 Activation by the Cryptic Peptide Mitocryptide-2 Originating from the Mitochondrial DNA-Encoded Cytochrome b. J. Immunol. 2019, 202, 2710–2719.
  28. Lin, Q.; Fang, D.; Hou, X.; Le, Y.; Fang, J.; Wen, F.; Gong, W.; Chen, K.; Wang, J.M.; Su, S.B. HCV peptide (C5A), an amphipathic α-helical peptide of hepatitis virus C, is an activator of N-formyl peptide receptor in human phagocytes. J. Immunol. 2011, 186, 2087–2094.
  29. Bellner, L.; Thorén, F.; Nygren, E.; Liljeqvist, J.-A.; Karlsson, A.; Eriksson, K. A proinflammatory peptide from herpes simplex virus type 2 glycoprotein G affects neutrophil, monocyte, and NK cell functions. J. Immunol. 2005, 174, 2235–2241.
  30. Betten, Å.; Bylund, J.; Cristophe, T.; Boulay, F.; Romero, A.; Hellstrand, K.; Dahlgren, C. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J. Clin. Investig. 2001, 108, 1221–1228.
  31. Tiffany, H.L.; Lavigne, M.C.; Cui, Y.H.; Wang, J.M.; Leto, T.L.; Gao, J.L.; Murphy, P.M. Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J. Biol. Chem. 2001, 276, 23645–23652.
  32. Le, Y.; Gong, W.; Tiffany, H.L.; Tumanov, A.; Nedospasov, S.; Shen, W.; Dunlop, N.M.; Gao, J.L.; Murphy, P.M.; Oppenheim, J.J.; et al. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 2001, 21, RC123.
  33. Hayhoe, R.P.G.; Kamal, A.M.; Solito, E.; Flower, R.J.; Cooper, D.; Perretti, M. Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: Indication of distinct receptor involvement. Blood 2006, 107, 2123–2130.
  34. Perretti, M.; Chiang, N.; La, M.; Fierro, I.M.; Marullo, S.; Getting, S.J.; Solito, E.; Serhan, C.N. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat. Med. 2002, 8, 1296–1302.
  35. Perretti, M.; Getting, S.J.; Solito, E.; Murphy, P.M.; Gao, J.L. Involvement of the receptor for formylated peptides in the in vivo anti-migratory actions of annexin 1 and its mimetics. Am. J. Pathol. 2001, 158, 1969–1973.
  36. Guo, Z.; Hu, Q.; Xu, L.; Guo, Z.-N.; Ou, Y.; He, Y.; Yin, C.; Sun, X.; Tang, J.; Zhang, J.H. Lipoxin A4 Reduces Inflammation Through Formyl Peptide Receptor 2/p38 MAPK Signaling Pathway in Subarachnoid Hemorrhage Rats. Stroke 2016, 47, 490–497.
  37. Fiore, S.; Maddox, J.F.; Perez, H.D.; Serhan, C.N. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J. Exp. Med. 1994, 180, 253–260.
  38. Fiore, S.; Ryeom, S.W.; Weller, P.F.; Serhan, C.N. Lipoxin recognition sites. Specific binding of labeled lipoxin A4 with human neutrophils. J. Biol. Chem. 1992, 267, 16168–16176.
  39. Krishnamoorthy, S.; Recchiuti, A.; Chiang, N.; Yacoubian, S.; Lee, C.-H.; Yang, R.; Petasis, N.A.; Serhan, C.N. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. USA 2010, 107, 1660–1665.
  40. Smole, U.; Gour, N.; Phelan, J.; Hofer, G.; Köhler, C.; Kratzer, B.; Tauber, P.A.; Xiao, X.; Yao, N.; Dvorak, J.; et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat. Immunol. 2020, 21, 756–765.
  41. Liang, T.S.; Wang, J.M.; Murphy, P.M.; Gao, J.L. Serum amyloid A is a chemotactic agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. Biochem. Biophys. Res. Commun. 2000, 270, 331–335.
  42. Su, S.B.; Gong, W.; Gao, J.L.; Shen, W.; Murphy, P.M.; Oppenheim, J.J.; Wang, J.M. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med. 1999, 189, 395–402.
  43. Kim, S.-H.; Kim, Y.N.; Jang, Y.-S. Cutting Edge: LL-37-Mediated Formyl Peptide Receptor-2 Signaling in Follicular Dendritic Cells Contributes to B Cell Activation in Peyer’s Patch Germinal Centers. J. Immunol. 2017, 198, 629–633.
  44. De Yang, B.; Chen, Q.; Schmidt, A.P.; Anderson, G.M.; Wang, J.M.; Wooters, J.; Oppenheim, J.J.; Chertov, O.; Yang, D.; Chen, Q.; et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 2000, 192, 1069–1074.
  45. Wenzel-Seifert, K.; Seifert, R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L-leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J. Immunol. 1993, 150, 4591–4599.
  46. Karlsson, J.; Fu, H.; Boulay, F.; Dahlgren, C.; Hellstrand, K.; Movitz, C. Neutrophil NADPH-oxidase activation by an annexin AI peptide is transduced by the formyl peptide receptor (FPR), whereas an inhibitory signal is generated independently of the FPR family receptors. J. Leukoc. Biol. 2005, 78, 762–771.
  47. Gavins, F.N.E.; Yona, S.; Kamal, A.M.; Flower, R.J.; Perretti, M. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 2003, 101, 4140–4147.
  48. Christophe, T.; Karlsson, A.; Dugave, C.; Rabiet, M.J.; Boulay, F.; Dahlgren, C. The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPRL1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPRL2. J. Biol. Chem. 2001, 276, 21585–21593.
  49. Bae, Y.-S.; Lee, H.Y.; Jo, E.J.; Kim, J.I.; Kang, H.-K.; Ye, R.D.; Kwak, J.-Y.; Ryu, S.H. Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J. Immunol. 2004, 173, 607–614.
  50. Bürli, R.W.; Xu, H.; Zou, X.; Muller, K.; Golden, J.; Frohn, M.; Adlam, M.; Plant, M.H.; Wong, M.; McElvain, M.; et al. Potent hFPRL1 (ALXR) agonists as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2006, 16, 3713–3718.
  51. Qin, C.X.; May, L.T.; Li, R.; Cao, N.; Rosli, S.; Deo, M.; Alexander, A.E.; Horlock, D.; Bourke, J.E.; Yang, Y.H.; et al. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat. Commun. 2017, 8, 14232.
  52. Nanamori, M.; Cheng, X.; Mei, J.; Sang, H.; Xuan, Y.; Zhou, C.; Wang, M.-W.; Ye, R.D. A novel nonpeptide ligand for formyl peptide receptor-like 1. Mol. Pharmacol. 2004, 66, 1213–1222.
  53. Zhou, C.; Zhang, S.; Nanamori, M.; Zhang, Y.; Liu, Q.; Li, N.; Sun, M.; Tian, J.; Ye, P.P.; Cheng, N.; et al. Pharmacological characterization of a novel nonpeptide antagonist for formyl peptide receptor-like 1. Mol. Pharmacol. 2007, 72, 976–983.
  54. Osei-Owusu, P.; Charlton, T.M.; Kim, H.K.; Missiakas, D.; Schneewind, O. FPR1 is the plague receptor on host immune cells. Nature 2019, 574, 57–62.
  55. Wang, J.; Ye, R.D. Agonist concentration-dependent changes in FPR1 conformation lead to biased signaling for selective activation of phagocyte functions. Proc. Natl. Acad. Sci. USA 2022, 119, e2201249119.
  56. Lammers, K.M.; Chieppa, M.; Liu, L.; Liu, S.; Omatsu, T.; Janka-Junttila, M.; Casolaro, V.; Reinecker, H.-C.; Parent, C.A.; Fasano, A. Gliadin Induces Neutrophil Migration via Engagement of the Formyl Peptide Receptor, FPR1. PLoS ONE 2015, 10, e0138338.
  57. Stempel, H.; Jung, M.; Pérez-Gómez, A.; Leinders-Zufall, T.; Zufall, F.; Bufe, B. Strain-specific Loss of Formyl Peptide Receptor 3 in the Murine Vomeronasal and Immune Systems. J. Biol. Chem. 2016, 291, 9762–9775.
  58. Dufton, N.; Hannon, R.; Brancaleone, V.; Dalli, J.; Patel, H.B.; Gray, M.; D’Acquisto, F.; Buckingham, J.C.; Perretti, M.; Flower, R.J. Anti-inflammatory role of the murine formyl-peptide receptor 2: Ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol. 2010, 184, 2611–2619.
  59. Schepetkin, I.A.; Khlebnikov, A.I.; Giovannoni, M.P.; Kirpotina, L.N.; Cilibrizzi, A.; Quinn, M.T. Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition. Curr. Med. Chem. 2014, 21, 1478–1504.
  60. He, H.-Q.; Troksa, E.L.; Caltabiano, G.; Pardo, L.; Ye, R.D. Structural Determinants for the Interaction of Formyl Peptide Receptor 2 with Peptide Ligands. J. Biol. Chem. 2014, 289, 2295–2306.
  61. Stepniewski, T.M.; Filipek, S. Non-peptide ligand binding to the formyl peptide receptor FPR2—A comparison to peptide ligand binding modes. Bioorg. Med. Chem. 2015, 23, 4072–4081.
  62. Ferrari, C.; Macchiarulo, A.; Costantino, G.; Pellicciari, R. Pharmacophore model for bile acids recognition by the FPR receptor. J. Comput. Aided Mol. Des. 2006, 20, 295–303.
  63. Bena, S.; Brancaleone, V.; Wang, J.M.; Perretti, M.; Flower, R.J. Annexin A1 interaction with the FPR2/ALX receptor: Identification of distinct domains and downstream associated signaling. J. Biol. Chem. 2012, 287, 24690–24697.
  64. Zhuang, Y.; Wang, L.; Guo, J.; Sun, D.; Wang, Y.; Liu, W.; Xu, H.E.; Zhang, C. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat. Commun. 2022, 13, 1054.
  65. Chen, T.; Xiong, M.; Zong, X.; Ge, Y.; Zhang, H.; Wang, M.; Won Han, G.; Yi, C.; Ma, L.; Ye, R.D.; et al. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat. Commun. 2020, 11, 1208.
  66. Zhu, Y.; Lin, X.; Zong, X.; Han, S.; Wang, M.; Su, Y.; Ma, L.; Chu, X.; Yi, C.; Zhao, Q.; et al. Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin. Nat. Commun. 2022, 13, 1775.
More
This entry is offline, you can click here to edit this entry!
ScholarVision Creations