Mikhail Leonidovich Gromov (also Mikhael Gromov, Michael Gromov or Mischa Gromov; Russian: Михаи́л Леони́дович Гро́мов; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of IHÉS in France and a Professor of Mathematics at New York University.
Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry".
Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His father Leonid Gromov and his Jewish[1] mother Lea Rabinovitz[2][3] were pathologists.[4] His mother was the cousin of chess-player Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. [5] Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him.[6] When Gromov was nine years old,[7] his mother gave him the book The Enjoyment of Mathematics by Hans Rademacher and Otto Toeplitz, a book that piqued his curiosity and had a great influence on him.[6]
Gromov studied mathematics at Leningrad State University where he obtained a master's degree in 1965, a Doctorate in 1969 and defended his Postdoctoral Thesis in 1973. His thesis advisor was Vladimir Rokhlin.[8]
Gromov married in 1967. In 1970, he was invited to give a presentation at the International Congress of Mathematicians in Nice, France. However, he was not allowed to leave the USSR. Still, his lecture was published in the conference proceedings.[9]
Disagreeing with the Soviet system, he had been thinking of emigrating since the age of 14. In the early 1970s he ceased publication, hoping that this would help his application to move to Israel.[7][10] He changed his last name to that of his mother.[7] When the request was granted in 1974, he moved directly to New York where a position had been arranged for him at Stony Brook.[9]
In 1981 he left Stony Brook University to join the faculty of University of Paris VI and in 1982 he became a permanent professor at the Institut des Hautes Études Scientifiques (IHES) where he remains today. At the same time, he has held professorships at the University of Maryland, College Park from 1991 to 1996, and at the Courant Institute of Mathematical Sciences in New York since 1996.[3] He adopted French citizenship in 1992.[11]
Gromov's style of geometry often features a "coarse" or "soft" viewpoint, analyzing asymptotic or large-scale properties.
Motivated by Nash and Kuiper's C1 embedding theorem and Stephen Smale's early results,[12] Gromov introduced in 1973 the method of convex integration and the h-principle, a very general way to solve underdetermined partial differential equations and the basis for a geometric theory of these equations. One application is the Gromov–Lees Theorem, named for him and Jack Alexander Lees, concerning Lagrangian immersions and a one-to-one correspondence between the connected components of spaces.[13]
In the 1980s, Gromov introduced the Gromov–Hausdorff metric, a measure of the difference between two compact metric spaces. In this context he proved Gromov's compactness theorem, stating that the set of compact Riemannian manifolds with Ricci curvature ≥ c and diameter ≤ D is relatively compact in the Gromov–Hausdorff metric. The possible limit points of sequences of such manifolds are Alexandrov spaces of curvature ≥ c, a class of metric spaces studied in detail by Burago, Gromov and Perelman in 1992. Gromov was also the first to study the space of all possible Riemannian structures on a given manifold.
Gromov introduced geometric group theory, the study of infinite groups via the geometry of their Cayley graphs and their word metric. In 1981 he proved Gromov's theorem on groups of polynomial growth: a finitely generated group has polynomial growth (a geometric property) if and only if it is virtually nilpotent (an algebraic property). The proof uses the Gromov–Hausdorff metric mentioned above. Along with Eliyahu Rips he introduced the notion of hyperbolic groups.
Gromov founded the field of symplectic topology by introducing the theory of pseudoholomorphic curves. This led to Gromov–Witten invariants, which are used in string theory, and to his non-squeezing theorem.
Gromov is also interested in mathematical biology,[12] the structure of the brain and the thinking process, and the way scientific ideas evolve.[9]
The content is sourced from: https://handwiki.org/wiki/Biography:Mikhail_Leonidovich_Gromov