Small Non-Coding RNAs in Salmonella–Host Interactions: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: , , , , ,

Salmonella species infect hosts by entering phagocytic and non-phagocytic cells, causing diverse disease symptoms, such as fever, gastroenteritis, and even death. Therefore, Salmonella has attracted much attention. Many factors are involved in pathogenesis, for example, the capsule, enterotoxins, Salmonella pathogenicity islands (SPIs), and corresponding regulators. These factors are all traditional proteins associated with virulence and regulation. Small non-coding RNAs (sRNAs) have also been reported to function as critical regulators. Salmonella has become a model organism for studying sRNAs. sRNAs regulate gene expression by imperfect base-pairing with targets at the post-transcriptional level. sRNAs are involved in diverse biological processes, such as virulence, substance metabolism, and adaptation to stress environments. 

  • sRNAs
  • Salmonella
  • host
  • interactions

1. Introduction

Salmonella enterica is one of the leading causes of foodborne gastroenteritis worldwide. The two most important serovars of Salmonella are Salmonella enterica serovar Typhimurium (S. Typhimurium) and Salmonella enterica serovar Enteritidis (S. Enteritidis), which cause non-typhoid salmonellosis infections [1]. As an intracellular zoonotic pathogen, Salmonella regularly infects hosts. It enters the stomach and intestinal lumen of the host after ingestion of contaminated food, causing gastroenteritis in both humans and animals as well as typhoid fever in mice. Salmonella must survive within the acidic environment of the stomach and penetrates the gut barrier via M cells in Peyer’s patches of the intestine [2]Salmonella invades the cell membrane and forms Salmonella-containing vacuoles (SCVs) with the help of a Type III secretion system (T3SS) encoded by Salmonella pathogenicity islands (SPIs) [3]. After that, macrophages engulf the bacteria and kill them to resist infection by producing reactive nitrogen species (RNS) and reactive oxygen species (ROS) [4]. Interestingly, Salmonella employs sophisticated strategies to survive and replicate inside phagocytic and non-phagocytic cells, causing serious diseases in humans and animals.
The small non-coding RNAs (sRNAs), which are known to be involved in the regulation of gene expression, have a length of 50–500 nucleotides and have been found in various bacteria, for example, Escherichia coliListeria monocytogenes, and S. Typhimurium [5][6]. Based on their mode of base-pairing, they are classified into cis- and trans-encoded sRNAs. Cis-encoded sRNAs are transcribed from the same loci as the mRNAs on the opposite strand of DNA and bind to their cognate mRNA targets with perfect complementarity, resulting in either transcriptional termination or translational initiation. Trans-encoded sRNAs interact with multiple mRNA targets through imperfect complementation [6][7]. Gene expression is usually regulated by trans-acting sRNAs at the post-transcriptional level [8]. The functions of more than half of the trans-acting sRNAs require the chaperone protein Hfq, which plays an important role in regulation by stabilizing sRNAs and mediates their interaction with the trans-encoded target mRNAs of host cells, leading to repression of translation or acceleration of mRNA decay [9]S. Typhimurium expresses hundreds of sRNAs, many of which are activated under special stress and virulence conditions, suggesting that sRNAs are an important component of regulatory networks controlling gene expression in bacteria during host infection [10].
sRNAs regulate many physiological processes in bacteria, including metabolism, iron homeostasis, quorum sensing, outer membrane protein biosynthesis, and the regulation of virulence genes [11][12]. In recent years, attention has been focused on the functions of sRNAs in bacteria–host interactions. To establish a successful infection, Salmonella must first resist the acidic environment and oxidative stress, adhere to and invade non-phagocytic cells, and finally evade host immunity to survive inside macrophages [13]. sRNAs play integral roles in bacterial stress responses, promote intracellular survival, and modulate host immune responses [9][14]. In this entry, researchers summarize the roles of sRNAs in the interaction between Salmonella and host cells (see Table 1 for a summary of sRNAs), aiming to understand the roles of sRNAs upon host cell infection, provide an overview of the functional mechanisms of sRNAs, and provide ideas to improve host resistance to Salmonella infection.

This entry is adapted from the peer-reviewed paper 10.3390/biology11091283

References

  1. Rehman, T.; Yin, L.; Latif, M.B.; Chen, J.H.; Wang, K.Y.; Geng, Y.; Huang, X.L.; Abaidullah, M.; Guo, H.R.; Ouyang, P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb. Pathog. 2019, 137, 103748.
  2. Jones, B.D.; Ghori, N.; Falkow, S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J. Exp. Med. 1994, 180, 15–23.
  3. Bakowski, M.A.; Braun, V.; Brumell, J.H. Salmonella-containing vacuoles: Directing traffic and nesting to grow. Traffic 2008, 9, 2022–2031.
  4. Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004, 2, 820–832.
  5. Waters, L.S.; Storz, G. Regulatory RNAs in bacteria. Cell 2009, 136, 615–628.
  6. Chan, H.; Ho, J.; Liu, X.; Zhang, L.; Wong, S.H.; Chan, M.T.; Wu, W.K. Potential and use of bacterial small RNAs to combat drug resistance: A systematic review. Infect. Drug Resist. 2017, 10, 521–532.
  7. Kwenda, S.; Gorshkov, V.; Ramesh, A.M.; Naidoo, S.; Rubagotti, E.; Birch, P.R.; Moleleki, L.N. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genom. 2016, 17, 47.
  8. Altuvia, S.; Wagner, E.G. Switching on and off with RNA. Proc. Natl. Acad. Sci. USA 2000, 97, 9824–9826.
  9. Chao, Y.; Vogel, J. The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 2010, 13, 24–33.
  10. Hoe, C.H.; Raabe, C.A.; Rozhdestvensky, T.S.; Tang, T.H. Bacterial sRNAs: Regulation in stress. Int. J. Med. Microbiol. 2013, 303, 217–229.
  11. Papenfort, K.; Vogel, J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 2010, 8, 116–127.
  12. Masse, E.; Salvail, H.; Desnoyers, G.; Arguin, M. Small RNAs controlling iron metabolism. Curr. Opin. Microbiol. 2007, 10, 140–145.
  13. Rychlik, I.; Barrow, P.A. Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiol. Rev. 2005, 29, 1021–1040.
  14. Ahmed, W.; Zheng, K.; Liu, Z.F. Small non-coding RNAs: New insights in modulation of host immune response by intracellular bacterial pathogens. Front. Immunol. 2016, 7, 431.
  15. Majdalani, N.; Cunning, C.; Sledjeski, D.; Elliott, T.; Gottesman, S. DsrA RNA regulates translation of RpoS message by an anti- antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. USA 1998, 95, 12462–12467.
  16. Ryan, D.; Mukherjee, M.; Nayak, R.; Dutta, R.; Suar, M. Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium. Biochimie 2018, 150, 48–56.
  17. Ren, J.; Sang, Y.; Qin, R.; Cui, Z.; Yao, Y.F. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol. 2017, 12, 1045–1057.
  18. Althouse, C.; Patterson, S.; Fedorka-Cray, P.; Isaacson, R.E. Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect. Immun. 2003, 71, 6446–6452.
  19. Meng, X.; Meng, X.C.; Wang, J.Q.; Wang, H.; Zhu, C.H.; Ni, J.; Zhu, G.Q. Small non-coding RNA STnc640 regulates expression of fimA fimbrial gene and virulence of Salmonella enterica serovar Enteritidis. BMC Vet. Res. 2019, 15, 319.
  20. Chen, S.; Zhang, A.; Blyn, L.B.; Storz, G. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 2004, 186, 6689–6697.
  21. Pfeiffer, V.; Papenfort, K.; Lucchini, S.; Hinton, J.C.; Vogel, J. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 2009, 16, 840–846.
  22. Pfeiffer, V.; Sittka, A.; Tomer, R.; Tedin, K.; Brinkmann, V.; Vogel, J. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol. Microbiol. 2007, 66, 1174–1191.
  23. Padalon-Brauch, G.; Hershberg, R.; Elgrably-Weiss, M.; Baruch, K.; Rosenshine, I.; Margalit, H.; Altuvia, S. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res. 2008, 36, 1913–1927.
  24. Gong, H.; Vu, G.P.; Bai, Y.; Chan, E.; Wu, R.; Yang, E.; Liu, F.Y.; Lu, S.W. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog. 2011, 7, e1002120.
  25. Chen, B.J.; Meng, X.; Ni, J.; He, M.P.; Chen, Y.F.; Xia, P.P.; Wang, H.; Liu, S.G.; Zhu, G.Q. Positive regulation of type III secretion effectors and virulence by RyhB paralogs in Salmonella enterica serovar Enteritidis. Vet. Res. 2021, 52, 44.
  26. Wang, L.; Cai, X.; Wu, S.Y.; Bomjan, R.; Nakayasu, E.S.; Handler, K.; Hinton, J.C.D.; Zhou, D.G. InvS coordinates expression of PrgH and FimZ and is required for invasion of epithelial cells by Salmonella enterica serovar Typhimurium. J. Bacteriol. 2017, 199, e00824-16.
  27. Kim, K.; Palmer, A.D.; Vanderpool, C.K.; Slauch, J.M. The small RNA PinT contributes to PhoP-mediated regulation of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2019, 201, e00312-19.
  28. Zhao, C.H.; Zhou, Z.; Zhang, T.F.; Liu, F.Y.; Zhang, C.Y.; Zen, K.; Gu, H.W. Salmonella small RNA fragment Sal-1 facilitates bacterial survival in infected cells via suppressing iNOS induction in a microRNA manner. Sci. Rep. 2017, 7, 16979.
  29. Briones, A.C.; Lorca, D.; Cofre, A.; Cabezas, C.E.; Kruger, G.I.; Pardo-Este, C.; Baquedano, M.S.; Salinas, C.R.; Espinoza, M.; Castro-Severyn, J.; et al. Genetic regulation of the ompX porin of Salmonella Typhimurium in response to hydrogen peroxide stress. Biol. Res. 2022, 55, 8.
  30. Kim, S.; Lee, Y.H. Impact of small RNA RaoN on nitrosative-oxidative stress resistance and virulence of Salmonella enterica serovar Typhimurium. J. Microbiol. 2020, 58, 499–506.
  31. Leclerc, J.M.; Dozois, C.M.; Daigle, F. Role of the Salmonella enterica serovar Typhi Fur regulator and small RNAs RfrA and RfrB in iron homeostasis and interaction with host cells. Microbiology 2013, 159, 91–602.
  32. Penaloza, D.; Acuna, L.G.; Barros, M.J.; Nunez, P.; Montt, F.; Gil, F.; Fuentes, J.A.; Calderon, I.L. The small RNA RyhB homologs from Salmonella Typhimurium restrain the intracellular growth and modulate the SPI-1 gene expression within RAW264.7 macrophages. Microorganisms 2021, 9, 635.
  33. Lee, Y.H.; Kim, S.; Helmann, J.D.; Kim, B.H.; Park, Y.K. RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress. Microbiology 2013, 159, 1366–1378.
  34. Westermann, A.J.; Forstner, K.U.; Amman, F.; Barquist, L.; Chao, Y.; Schulte, L.N.; Muller, L.; Reinhardt, R.; Stadler, P.F.; Vogel, J. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 2016, 529, 496–501.
  35. Correia Santos, S.; Bischler, T.; Westermann, A.J.; Vogel, J. MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT. Cell Rep. 2021, 34, 108722.
  36. Foster, J.W.; Hall, H.K. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 1990, 172, 771–778.
  37. Chen, C.Y.; Eckmann, L.; Libby, S.J.; Fang, F.C.; Okamoto, S.; Kagnoff, M.F.; Fierer, J.; Guiney, D.G. Expression of Salmonella typhimurium rpoS and rpoS-dependent genes in the intracellular environment of eukaryotic cells. Infect. Immun. 1996, 64, 4739–4743.
  38. Ryan, D.; Ojha, U.K.; Jaiswal, S. The small RNA DsrA influences the acid tolerance response and virulence of Salmonella enterica serovar Typhimurium. Front. Microbiol. 2016, 7, 599.
  39. Sledjeski, D.D.; Gupta, A.; Gottesman, S. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J. 1996, 15, 3993–4000.
  40. Lease, R.A.; Smith, D.; McDonough, K.; Belfort, M. The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli. J. Bacteriol. 2004, 186, 6179–6185.
  41. Fozo, E.M.; Kawano, M.; Fontaine, F.; Kaya, Y.; Mendieta, K.S.; Jones, K.L.; Ocampo, A.; Rudd, K.E.; Storz, G. Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Mol. Microbiol. 2008, 70, 1076–1093.
  42. Wagner, C.; Hensel, M. Adhesive mechanisms of Salmonella enterica. Adv. Exp. Med. Biol. 2011, 715, 17–34.
  43. Hara-Kaonga, B.; Pistole, T.G. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar typhimurium to human cells. Can. J. Microbiol. 2004, 50, 719–727.
  44. Hensel, M. Evolution of pathogenicity islands of Salmonella enterica. Int. J. Med. Microbiol. 2004, 294, 95–102.
  45. Sittka, A.; Lucchini, S.; Papenfort, K.; Sharma, C.M.; Rolle, K.; Binnewies, T.T.; Hinton, J.C.; Vogel, J. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 2008, 4, e1000163.
  46. Li, J.; Li, N.; Ning, C.C.; Guo, Y.; Ji, C.H.; Zhu, X.Z.; Zhang, X.X.; Meng, Q.L.; Shang, Y.X.; Xiao, C.C.; et al. sRNA STnc150 is involved in virulence regulation of Salmonella Typhimurium by targeting fimA mRNA. FEMS Microbiol. Lett. 2021, 368, fnab124.
  47. Mastroeni, P.; Vazquez-Torres, A.; Fang, F.C.; Xu, Y.; Khan, S.; Hormaeche, C.E.; Dougan, G. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 2000, 192, 237–248.
  48. Altuvia, S.; Weinstein-Fischer, D.; Zhang, A.; Postow, L.; Storz, G. A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator. Cell 1997, 90, 43–53.
  49. Schlosser-Silverman, E.; Elgrably-Weiss, M.; Rosenshine, I.; Kohen, R.; Altuvia, S. Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J. Bacteriol. 2000, 182, 5225–5230.
  50. Massé, E.; Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 2002, 99, 4620–4625.
  51. Calderon, I.L.; Morales, E.H.; Collao, B.; Calderon, P.F.; Chahuan, C.A.; Acuna, L.G.; Gil, F.; Saavedra, C.P. Role of Salmonella Typhimurium small RNAs RyhB-1 and RyhB-2 in the oxidative stress response. Res. Microbiol. 2014, 165, 30–40.
  52. Steele-Mortimer, O.; Brumell, J.H.; Knodler, L.A.; Méresse, S.; Lopez, A.; Finlay, B.B. The invasion-associated type III secretion system of Salmonella enterica serovar typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol. 2002, 4, 43–54.
  53. Srikumar, S.; Kröger, C.; Hébrard, M.; Colgan, A.; Owen, S.V.; Sivasankaran, S.K.; Cameron, A.D.; Hokamp, K.; Hinton, J.C. RNA-seq brings new insights to the intra-macrophage transcriptome of Salmonella Typhimurium. PLoS Pathog. 2015, 11, e1005262.
  54. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449, 819–826.
  55. Zhong, J.; Kyriakis, J.M. Dissection of a signaling pathway by which pathogen-associated molecular patterns recruit the JNK and p38 MAPKs and trigger cytokine release. J. Biol. Chem. 2007, 282, 24246–24254.
  56. Bahrami, B.; Macfarlane, S.; Macfarlane, G.T. Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. J. Appl. Microbiol. 2011, 110, 353–363.
More
This entry is offline, you can click here to edit this entry!
ScholarVision Creations