2. A Brief Overview on Spirulina as Important Algae for Human Food and Health
The term “algae” refers to a wide collection of organisms that produce their own food via the process of photosynthesis and may be found in a variety of habitats, including marine and freshwater environments [
3]. They are found in almost every part of the world and may be divided into two categories. Microalgae are the most basic and fundamental members of the plant kingdom. The bulk of their cells are rather thin, measuring between 3 and 20 µm, and some species form simple colonies. Macroalgae are typically multicellular, expand at a quick rate, and can reach widths of up to 20 m. When compared to the growth rates of terrestrial plants, the rates of growth of macroalgae are significantly higher. Production of macroalgae in maritime habitats, also known as seaweed, does not need the usage of arable land or fertilizer and can take place without either of those factors being present. Seaweeds have the capacity to generate more biomass per hectare than vascular plants do, develop at a far faster rate, and make use of the light energy and carbon dioxide that is taken in from the environment. In the field of applied botany, the tiny algae known as cyanobacteria were once known as cyanophyceae. Cyanobacteria are some of the earth’s oldest primitives. They are one of the prokaryotes that have certain properties in common with plants, such as the capacity to carry out photosynthesis, and their cytoskeleton is similar (phototrophic nutrition). The cellular forms of cyanobacteria have undergone several transformations during the course of their evolution, ranging from unicellular to multicellular structures. They can be found in ecosystems containing fresh water, marine life, and terrestrial life, as well as certain severe or harsh habitats, such as hot springs, dry soils, some saline environments, and glaciers [
3,
16,
17,
18].
Arthrospira platensis is the species of spirulina that is multicellular, filamentous, heterogeneous, non-branching, and does not fix nitrogen. It is also capable of photosynthesis and the production of chemical compounds that are necessary for existence. It is grown in liquid farms that are located within open ponds, and flourishes naturally in brackish waters, salt lakes, and warm conditions that are rich in bicarbonate and carbonate [
19,
20,
21,
22,
23]. In Iraq, many species of spirulina, such as
A. jenner, were discovered, identified as novel algae, and listed in the inventory of Iraq’s algal flora [
24,
25].
Before 1962, spirulina was considered to be a type of algae. However, in that year, it was reclassified as a member of the prokaryotic kingdom, and the name “cyanobacteria” was suggested for it [
18,
26]. Different-sized filaments or spiral trichomes can be produced by organisms belonging to the genus
Arthrospira. Spirulina may fold and bend to varying degrees, taking on shapes that range from a tightly coiled form to a shape that is straight and unwound. Solitary in nature, filaments reproduce by a process known as binary fission. The lengths of the filaments typically range from 2 to 12 µm but can go as high as 16 µm at times [
27,
28]. The diameter of the thread ranges anywhere from 3 to 12 µm, and the cells that make up the filament contain gas vacuoles that aid in floating [
19,
29,
30].
3. Nutritional and Biochemical Components of Spirulina
Food is the primary means through which the body receives the myriad of vital nutrients that are required for development, the performance of essential biological activities, and the preservation of overall health. On the one hand, considering that our bodies are unable to produce some nutrients, it is necessary to receive them through this diet. On the other hand, several diseases have been related to an imbalance in the human diet, which can be caused by the presence of certain unsuitable nutritional components or the body’s incapacity to absorb them [
31]. The overall composition of spirulina changes depending on the source of the algae used to cultivate it, the environmental conditions of the manufacturing facility, and the season of the year. Proteins make up between 55% and 70% of the body of spirulina, while carbohydrates make up between 15% and 25%, fats make up between 6% and 8%, minerals make up between 7 and 13%, moisture (dried algae) makes up between 3% and 7%, and dietary fibers make up between 8% and 10% [
32].
Figure 1 presents a description of the components that make up spirulina. The proportion of PUFAs is between 1.5% and 2% of the total fat content, and it is rich in linolenic acid, which accounts for 36% of the total PUFAs, as well as vitamins (B1, B2, B3, B6, B9, B12, C, D, and E) and minerals (K, Ca, Cr, Cu, Fe, Mg, Mn, P, Se, Na, and Zn), as well as the pigments (chlorophyll A, xanthophylls, β-carotene, echinenone, myxoxanthophyll, zeaxanthin, canthaxanthin, diatoxanthin, 3-hydroxychininone, β-cryptoxanthin oscillaxanthin, phycobiliproteins, C-phycocyanin, allophycocyanin) and enzymes (such as lipase) [
33]. The components of spirulina’s chemical makeup are summarized in
Table 1.
Table 1. The value of proximate composition of spirulina from different reported research.
Proximate Composition (%) |
Food Energy |
References |
Moisture |
Fat/Lipid |
Protein |
Ash |
Fiber |
Carbohydrate |
4–5 |
4–7 |
65–72 |
6–12% |
3–7 |
15–25 |
2.90 cal/g |
[34] |
3–7 |
6–8 |
55–70 |
7–13 |
8–10 |
15–25 |
– |
[32] |
5.37 |
7.19 |
61.57 |
7.10 |
7.93 |
16.21 |
– |
[35] |
5.45–9.92 |
6.61–6.84 |
52.85–65.00 |
9.55–9.93 |
9.79–11.37 |
15.29–13.62 |
329.89–379.58 |
[36] |
5.27 |
1.27 |
71.90 |
3.50 |
9.70 |
13.63 |
353.55 |
[37] |
4.74 |
6.93 |
62.84 |
7.47 |
8.12 |
– |
– |
[38] |
– |
7.16 |
52.95 |
– |
– |
13.20 |
– |
[39] |
1 |
6 |
63 |
8 |
– |
22 |
– |
[40] |
– |
4 |
65 |
3 |
3 |
19 |
– |
[41] |
4–6 |
5–7 |
55–70 |
3–6 |
5–7 |
– |
– |
6 |
6 |
61 |
9 |
– |
14 |
– |
9 |
7 |
60 |
11 |
– |
– |
– |
Figure 1. (
A) Nutritional composition and (
B) biochemical components of spirulina [
36].
3.1. Carbohydrates
According to the findings of various studies, the proportion of carbohydrates present in
spirulina spp. is around 13.6% [
42,
43]. On the other hand, a number of additional studies came to the conclusion that the total carbohydrate content of spirulina ranged from 15% to 25% dry weight [
32,
33,
42,
44,
45,
46]. There is no cellulose present in spirulina algae’s carbohydrates; instead, they are made up of a variety of sugars, such as glucose, mannose, galactose, and xylose, in addition to glycogen. As a result, the carbohydrates included in spirulina are simple to digest, as well as nutrient-dense, and may be consumed by elderly individuals and those who have intestinal malabsorption. In addition to that, it has a polysaccharide with high molecular weight known as immolina. Rhamnose is the primary component in it, accounting for around 52.3% of the total sugars generated by spirulina. In another variety, rhamnose accounts for roughly 49.7% of the total sugars produced. Spirulina has a biomass of 1.22 g/L, its polysaccharide content is 2.590% of its biomass, and the total sugars that it contains are 17.275% of its polysaccharides [
6,
43,
47,
48,
49]. Polymers, such as glucosamine (1.9%), rhamnosamine (9.7%), and glycogen (0.5%), as well as small amounts of glucose, fructose, sucrose, glycerine, mannitol, and sorbitol, are the primary components of virtually all absorbable carbohydrates. Spirulina has sugars in its cell wall that are analogous to the sugars found in the cell walls of Gram-negative bacteria. These are composed of glucosamine, muramic acid, and glucosamine that have bound to peptides. Due to the fact that these cell walls are relatively thin, digestive enzymes are able to access the contents of the cell with relative ease [
42]. Of the various culture media that are utilized during the production of spirulina, each has an impact on the total amount of carbohydrates that are produced. According to the findings of Madkour et al. [
39], the percentage of carbohydrate content in spirulina algae grown in low-cost culture media varied depending on the type of nitrogen source present in the culture medium. To accomplish this, all of the nutrients found in the standard medium are swapped out for more affordable and readily available commercial chemicals and fertilizers in the region. The percentage of carbohydrates present in the medium with the standard nitrogen source was 13.20%, but this percentage increased to 16.01% when the nitrogen source was replaced with a medium containing urea. In the ammonium nitrate (NH4NO3) medium, the concentration of carbohydrates rose to 24.50% on a dry weight basis; however, other researchers discovered that the amount of carbohydrates varied depending on the region of production and the kind of product being made [
32].
3.2. Lipids/Fats and Fatty Acids
According to the findings of several researchers, the lipid content of
S. platensis ranges from 5% to 10% of the dry weight. Other research that used more effective extraction techniques found that the percentage was greater than 11%. In most cases, it will contain fats that are necessary for human survival, and free fatty acids will make up between 70% and 80% of the total fat. These total lipids may be divided into a saponified fraction that makes up 83% of the total and an unsaponifiable fraction that makes up 17%, with the unsaponifiable fraction mostly consisting of paraffin, pigments, terpene alcohols, and sterols. Omega-6 fatty acids make up the majority of the total fat, and there is just a trace quantity of cholesterol (less than 0.1 mg/100 g dry mass) present [
33,
42]. Adults need 1–2% of their total energy intake to come from essential fatty acids, whereas children need 3% of their total energy intake [
50].
The location of the closest polyunsaturated point in the MTG is used to describe the optimal omega-6 to omega-3 ratio that some nutritionists advocate, which falls between 4 and 5 [
31,
51]. It was discovered that the total fatty acid concentration of
A. platensis is 81.2 mg/g on a dry weight basis, which demonstrates that spirulina is an excellent source of fatty acids [
52]. However, Sharoba [
38] discovered that the proportion of total saturated fatty acids was 44.21 mg/100 g, but the proportion of total essential unsaturated fatty acids was 55.79 mg/100 g. When looking at the nutritional value of spirulina, researchers found that it has a significant amount of palmitic acid (16:0), which makes up more than 60% of the lipids in
S. maxima and 25% in
S. platensis, respectively. While the proportion of saturated palmitic acid in the total fatty acids was 25.8%, the percentage of γ-linolenic acid in the total fatty acids was 40.1%. Spirulina is an excellent dietary supplement for essential fatty acid deficits as a result [
42].
Spirulina was discovered to have a significant quantity of PUFAs, with levels ranging from 1.5% to 2.0% fat. This has piqued the curiosity of many researchers, who have been doing studies on PUFAs to determine how much of this nutrient is contained in spirulina [
23]. According to the findings of another study, PUFAs made about 30% of the total fats [
6], while other researchers reported that the proportion of these fatty acids ranged between 19.4% and 21.9% of the total fatty acids [
53]. Its primary fatty acid, 15,12.9-octadecatrienoic acid, accounted for 10.1% of its total fatty acid content, whereas the omega-3 content accounted for less than 1% of its total fatty acid content. Additionally, it had some omega-6 type fatty acids. In addition to this, a significant amount of saturated hexadecanoic acid was discovered (37.6%). The concentration of monounsaturated fatty acids (MUFAs) was low, with the octadec-9-enoic acid (18:1) omega-9 type falling below 2.0%. The quantity of γ-linolenic acid, which came in at 16 mg, had the greatest content, followed by palmitic acid, which had the highest percentage (23%), while myristic acid had the lowest percentage (0.2%) [
52].
According to Matos et al. [
53], the amount of fatty acids in spirulina algae might vary depending on a variety of parameters, including the growing circumstances and development stage at the time of harvest. The total fatty acid content was estimated to be 4.25 mg/100 g, and it was discovered to include sapienic acid at a level of 2.25 mg/100 g, linoleic acid at a level of 16.7%, and γ-linolenic acid at a level of 14% [
51]. According to the findings of Alyasiri et al. [
54], one gram of spirulina has a high concentration of linolenic acid of the omega-6 type; specifically, the concentration was 29.1 mg/g, which corresponds to a rate of 2.91%. Additionally, it has PUFAs, which are saturated with 18 carbon atoms and include omega-6. When it comes to the most significant biologically active compounds found in spirulina, phytol had the highest percentage (100%), followed by monolinoleoylglyceroltrimethylsilylether-1b (71.31%), steroid and cholestan-3-ol (2-methylene-3β, 5α) (54.62%), and 9, 12, 15-octadecatrienoic acid, 2, 3-dihydroxypropyl ester (28.21%), hexadecanoic acid methyl ester (23.23%), and methenamine (23.21%) [
55]. According to Legezynska et al. (2014), spirulina algae are one of the primary sources of omega-3 fatty acids that fish feed on. Examples of these fatty acids are docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). As a result, a higher percentage of these essential fatty acids might be found in fish oils [
56]. Linoleic acid, which belongs to the omega-6 group, and alpha (α)-linolenic acid, which belongs to the omega-3 group, is found in the fats of marine algae, suspended algae, and fish oils, respectively. EPA, DHA, α-linolenic acid, and docosapentaenoic acid are the four essential fatty acids (omega-3) that are considered to be of the utmost importance [
57]. According to the research conducted by Liestianty et al. [
52], the fatty acids contained in spirulina include myristic, heptadecanoic, stearic, oleic, palmitoleic, omega-3, omega-6, linoleic acid, and palmitic acid. Omega-6 kinds, the most significant of which are palmitoleic, oleic, linoleic, and γ-linolenic, and omega-3 types, including α-linoleic acid, are among the most essential types that may be found [
38]. Linolenic acid, stearidonic acid, EPA, DHA, and arachidonic acid are found in high concentrations in it [
23]. The omega-6 family, which includes γ-linolenic acid and arachidonic acid, and the omega-3 family, which includes EPA and DHA, are the most essential long-chain PUFAs that algae can produce [
6]. Utilizing gas chromatography–mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC), Al-Dhabi and Valan Arasu [
51] were able to identify PUFAs in 37 different commercialized spirulina species. Myristic acid, stearic acid, and eicosadienoic acid were identified as the three saturated fatty acids that were present in the spirulina samples. It was found that ten of the unsaturated fatty acids in the spirulina samples were substantially different from one another.
The accumulation of toxic compounds in fish, as well as the odor, strange taste, and oxidative instability of the oils extracted from fish, has a negative impact on the total dependence on the synthesis of long-chain PUFAs (especially omega-3 type) from fish oil. This has a negative impact on the total dependence on the synthesis of long-chain PUFAs from fish oil. As a result, the focus shifted toward the possibility of employing spirulina algae in a commercial environment as a different source to produce these fatty acids [
56].
Spirulina algae are a potential source of polyunsaturated fatty acids (PUFAs). Essential fatty acids, such as omega-3 and omega-6, are unable to be produced by humans and, as a result, must be received through the consumption of food. They play a significant role in preserving health and warding off disease. Even though the human gut microbiota is capable of synthesizing long-chain fatty acids, such as linoleic and α-linolenic acids, the synthesis of these acids is controlled by various variables, which makes the consumption of these fatty acids vital for the maintenance of good health [
6]. Because it is not commonly found in foods that people eat on a regular basis, despite it having a high nutritional value, the presence of -linolenic acid is interesting. This acid is typically generated in humans from γ-linolenic acid (18:2 omega-6), which comes from vegetable sources [
42].
Spirulina is the only food source that contains large amounts of essential fatty acids, especially γ-linolenic acid, which is an omega-6 type that helps regulate all hormones and has anti-inflammatory properties. Comparatively, breast milk is the only food source that contains large amounts of essential fatty acids [
19,
39,
54]. The other supply comes from the oil that is derived from borage, black currant, and evening primrose seeds. In comparison, an evening primrose oil intake of 500 mg has just 45 mg of γ-linolenic acid, whereas 10 g of spirulina has 135 mg of γ-linolenic acid. Comparatively, evening primrose oil only contains 9% linoleic acid, whereas the lipids of spirulina contain around 20–25% of γ-linolenic acid [
58].