10. Resin Infusion under Double Flexible Tooling (RIDFT)
The RIDFT process is a variation of the liquid composite molding (LCM) technique. The RIDFT idea was developed to solve problems existing in other LCM processes. Some of these issues are high tooling costs, slow production rates, complex resin infusion, long processing times, usage of an expensive preform, and environmental pollution [
139]. The RIDFT process uses a two-dimensional resin flow to produce cost-effective composite parts at an increasingly higher production rate while reducing volatile organic compound emissions into the environment. Fiber reinforcements are initially placed between the two silicone diaphragms and closed (step 1). Air is vacuumed from between the two silicone sheets via the vent port to compact the fiber reinforcement, and therefore, permeability is reduced (step 2). Once the resin infusion gate is open, vacuum pressure drives the resin from the reservoir to impregnate the fiber reinforcement (step 3). A flow distribution media is placed on top of the silicone sheets to increase permeability and assist in the quick infiltration of the resin. After impregnation, the infusion gate is closed, and the wetted reinforcement inside the silicone sheets is draped over a one-sided mold with the aid of a vacuum [
140] (step 4). At this time, the vent port is still left open. The formed part is allowed to cure, after which it is de-molded (step 5). Using a silicone sheet prevents the direct contact of the wetted reinforcements on the mold, which increases the tool life [
141]. However, silicone sheets are expensive to replace, and cleaning them during production runs between parts takes longer.
References
1. Kumar, K.V. Study on Alternate Resins for Wet Lay up of Cfrp Laminates. Int. J. Appl. Eng. Res. 2015, 10, 32696–32700.
2. Yashas Gowda, T.G.; Sanjay, M.R.; Subrahmanya Bhat, K.; Madhu, P.; Senthamaraikannan, P.; Yogesha, B. Polymer Matrix-Natural
Fiber Composites: An Overview. Cogent Eng. 2018, 5, 1446667. [CrossRef]
3. Chukov, D.; Nematulloev, S.; Zadorozhnyy, M.; Tcherdyntsev, V.; Stepashkin, A.; Zherebtsov, D. Structure, Mechanical and
Thermal Properties of Polyphenylene Sulfide and Polysulfone Impregnated Carbon Fiber Composites. Polymers 2019, 11, 684.
[CrossRef] [PubMed]
4. Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed.; [Expanded and Rev. ed.]; CRC Press: Boca
Raton, FL, USA, 2008; ISBN 978-0-8493-4205-9.
J. Compos. Sci. 2022, 6, 172 26 of 30
5. Aboudi, J.; Arnold, S.; Bednarcyk, B. Micromechanics of Composite Materials; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2013; ISBN 9780123970350.
6. Hollaway, L.C. The Evolution of and the Way Forward for Advanced Polymer Composites in the Civil Infrastructure. Constr.
Build. Mater. 2003, 17, 365–378. [CrossRef]
7. Beardmore, P. Composite Structures for Automobiles. Compos. Struct. 1986, 5, 163–176. [CrossRef]
8. Erden, S.; Ho, K. Fiber Reinforced Composites. In Fiber Technology for Fiber-Reinforced Composites; CRC Press: Boca Raton, FL, USA,
2017; pp. 51–79. [CrossRef]
9. Mortensen, A. Interfacial Phenomena in the Solidification Processing of Metal Matrix Composites. Mater. Sci. Eng. A 1991, 135,
1–11. [CrossRef]
10. Mazumdar, S.K. Composites Composites; CRC Press: Boca Raton, FL, USA, 2002; ISBN 0-8493-0585-3.
11. Shenoi, R. Design of Ships and Marine Structures Made from FRP Composite Materials. Compr. Compos. Mater. 2001, 6, 429–449.
12. Schwartz, M.M. Encyclopedia of Materials, Parts, and Finishes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-1-56676-661-6.
13. Panthapulakkal, S.; Raghunanan, L.; Sain, M.; Kc, B.; Tjong, J. Natural Fiber and Hybrid Fiber Thermoplastic Composites: Advancements
in Lightweighting Applications; Woodhead Publishing: Sawston, UK, 2017; ISBN 9780081008003.
14. Lancaster, J.F. Brazing, Soldering and Adhesive Bonding. In Metallurgy of Welding; Springer: Dordrecht, The Netherlands, 1980;
pp. 87–109. [CrossRef]
15. Lotfi, A.; Li, H.; Dao, D.V.; Prusty, G. Natural Fiber–Reinforced Composites: A Review on Material, Manufacturing, and
Machinability. J. Thermoplast. Compos. Mater. 2021, 34, 238–284. [CrossRef]
16. Hubert, P.; Fernlund, G.; Poursartip, A. Autoclave Processing for Composites; Woodhead Publishing Limited: Sawston, UK, 2012.
17. Hjellming, L.N.; Walker, J.S. Thermal Curing Cycles for Composite Cylinders with Thick Walls and Thermoset Resins. J. Compos.
Mater. 1989, 23, 1048–1064. [CrossRef]
18. Martinez, G.M. Fast Cures for Thick Laminated Organic Matrix Composites. Chem. Eng. Sci. 1991, 46, 439–450. [CrossRef]
19. Running, D.M.; Ligon, J.B.; Miskioglu, I. Delete from the SAGE Social Science Collections. All Rights Reserved. J. Compos. Mater.
1999, 33, 928–940. [CrossRef]
20. SMITeam Autoclave Curing vs. out of Autoclave: Difference?—SMI Composites. Available online: https://smicomposites.com/
autoclave-curing-vs-out-of-autoclave-whats-the-difference/ (accessed on 9 October 2021).
21. Centea, T.; Grunenfelder, L.K.; Nutt, S.R. A Review of Out-of-Autoclave Prepregs—Material Properties, Process Phenomena, and
Manufacturing Considerations. Compos. Part A Appl. Sci. Manuf. 2015, 70, 132–154. [CrossRef]
22. Strong, A.B. Fundamentals of Composites Manufacturing: Materials, Methods and Applications, 2nd ed.; Society of Manufacturing
Engineers: Dearborn, MI, USA, 2008; ISBN 978-0-87263-854-9.
23. Akovali, G. Handbook of Composite Fabrication; Rapra Technology Ltd.: Shrewsbury, UK, 2001; ISBN 978-1-85957-263-4.
24. Budelmann, D.; Schmidt, C.; Meiners, D. Prepreg Tack: A Review of Mechanisms, Measurement, and Manufacturing Implication.
Polym. Compos. 2020, 41, 3440–3458. [CrossRef]
25. Hubert, P.; Centea, T.; Grunefleder, L.; Nutt, S.; Kratz, J.; Levy, A. Out-of-Autoclave Prepreg Processing; Elsevier: Amsterdam, The
Netherlands, 2017; Volume 2, ISBN 978-0-08-100533-0.
26. Hall, W.; Javanbakht, Z. Design and Manufacturing of Fiber-Reinforced Composites. In Advanced Strutured Materials; Springer
International Publishing: Cham, Switzerland, 2021; Volume 158, ISBN 978-3-030-78806-3.
27. Vacuum Bagging Process—German Advanced Composites. Available online: https://german-advanced-composites.com/
vacuum-bagging-process (accessed on 25 September 2021).
28. West System Inc. Vacuum Bagging Techniques; Gougeon Brothers: Bay, MI, USA, 2010; Volume 1, pp. 1–56.
29. Shah, M.; Chaudhary, V. Flow Modeling and Simulation Study of Vacuum Assisted Resin Transfer Molding (VARTM) Process: A
Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012087. [CrossRef]
33. Schechter, S.G.K.; Centea, T.; Nutt, S.R. Polymer Film Dewetting for Fabrication of Out-of-Autoclave Prepreg with High
through-Thickness Permeability. Compos. Part A Appl. Sci. Manuf. 2018, 114, 86–96. [CrossRef]
34. Bender, B.B.; Centea, T.; Nutt, S.R. Fast Cure of Vacuum Bag Only Prepreg Composites. In Proceedings of the Composites and
Advanced Material Expo (CAMX 2019), Anaheim, CA, USA, 23–26 September 2019.
35. Repecka, L.; Boyd, J. Vacuum-Bag-Only-Curable Prepregs That Produce Void-Free Parts. In Proceedings of the 47th International
SAMPE Symposium and Exhibition, Long Beach, CA, USA, 12–16 May 2002; pp. 1862–1874.
36. Ridgard, C. Out of Autoclave Composite Technology for Aerospace, Defense and Space Structures. In Proceedings of the
International SAMPE Symposium and Exhibition, Baltimore, MD, USA, 18–21 May 2009; Volume 54.
37. Yang, Y.-H.; Young, W.-B. Carbon/Epoxy Composites Fabricated by Vacuum Consolidation of the Interleaved Layup of Prepregs
and Dry Fibers. Fibers Polym. 2021, 22, 460–468. [CrossRef]
J. Compos. Sci. 2022, 6, 172 27 of 30
38. Centea, T.; Peters, G.; Hendrie, K.; Nutt, S. Effects of Thermal Gradients on Defect Formation during the Consolidation of Partially
Impregnated Prepregs. J. Compos. Mater. 2017, 51, 3987–4003. [CrossRef]
39. Maguire, J.M.; Nayak, K.; Ó Brádaigh, C.M. Novel Epoxy Powder for Manufacturing Thick-Section Composite Parts under
Vacuum-Bag-Only Conditions. Part II: Experimental Validation and Process Investigations. Compos. Part A Appl. Sci. Manuf. 2020,
136, 105970. [CrossRef]
40. Edwards, W.T.; Martinez, P.; Nutt, S.R. Process Robustness and Defect Formation Mechanisms in Unidirectional Semipreg. Adv.
Manuf. Polym. Compos. Sci. 2020, 6, 198–211. [CrossRef]
50. Available online: https://romeorim.com/rtm (accessed on 2 May 2022).
51. Hamidi, Y.K.; Altan, C.M. 2.5 Process-Induced Defects in Resin Transfer Molded Composites. In Comprehensive Composite Materials
II; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–106, ISBN 978-0-08-100534-7.
66. Du, R.K.; Wang, F.F.; Chen, X.H.; Zhang, Y.F.; Zhao, G.Z.; Liu, Y.Q. Flow Simulation and Optimization of the Car Bumper Beam
by VARTM Process. Adv. Mater. Res. 2013, 753–755, 236–240. [CrossRef]
67. Kang, M.K.; Lee, W.I.; Hahn, H.T. Analysis of Vacuum Bag Resin Transfer Molding Process. Compos. Part A Appl. Sci. Manuf. 2001,
32, 1553–1560. [CrossRef]
68. Lawrence, J.M.; Holmes, S.T.; Louderback, M.; Williams, A.; Simacek, P.; Advani, S.G. The Use of Flow Simulations of Large
Complex Composite Components Using the VARTM Process. In Proceedings of the FPCM-9 9th International Conference on
Flow Processes in Composite Materirals, Montréal, QC, Canada, 8–10 July 2008; Volume 9, pp. 1–8.
69. Shevtsov, S.; Zhilyaev, I.; Chang, S.H.; Wu, J.K.; Huang, J.P.; Snezhina, N. Experimental and Numerical Study of Vacuum Resin
Infusion for Thin-Walled Composite Parts. Appl. Sci. 2020, 10, 1485. [CrossRef]
70. Tamakuwala, V.R. Manufacturing of Fiber Reinforced Polymer by Using VARTM Process: A Review. Mater. Today Proc. 2021, 44,
987–993. [CrossRef]
83. Sharma, A.K.; Singh, R.K.; Dixit, A.R. Advances in Manufacturing Engineering and Materials; Springer: Cham, Switzerland, 2019;
Volume 1, ISBN 978-3-319-99352-2.
84. Coenen, V.; Hatrick, M.; Law, H.; Brosius, D.; Nesbitt, A.; Bond, D. A Feasibility Study of Quickstep Processing of an Aerospace
Composite Material. In Proceedings of the SAMPE Europe Conference, Paris, France, 5–7 April 2005; pp. 470–475.
85. Schlimbach, J.; Ogale, A. Out-of-Autoclave Curing Process in Polymer Matrix Composites; Woodhead Publishing Limited: Sawston,
UK, 2012.
86. Zhang, J.; Fox, B.L. Manufacturing Influence on the Delamination Fracture Behavior of the T800H/3900-2 Carbon Fiber Reinforced
Polymer Composites. Mater. Manuf. Process. 2007, 22, 768–772. [CrossRef]
87. Khan, L.A.; Nesbitt, A.; Day, R.J. Effect of a Novel Processing Technique on the Physical and Mechanical Properties of 977-
2a Carbon/Epoxy Composites. Available online: http://www.escm.eu.org/docs/eccm13/posters/1727.pdf (accessed on 2
November 2020).
108. TPI Technology, Inc. An Overview of the SCRIMPTM Technology. Available online: https://studylib.net/doc/13584356/anoverview-of-the-scrimp-technology-%E2%84%A2 (accessed on 26 September 2021).
109. Hindersmann, A. Confusion about Infusion: An Overview of Infusion Processes. Compos. Part A Appl. Sci. Manuf. 2019,
126, 105583. [CrossRef]
110. Boh, J.W.; Louca, L.A.; Choo, Y.S.; Mouring, S.E. Damage Modelling of SCRIMP Woven Roving Laminated Beams Subjected to
Transverse Shear. Compos. Part B Eng. 2005, 36, 427–438. [CrossRef]
111. Sun, X.; Li, S.; Lee, L.J. Mold Filling Analysis in Vacuum-Assisted Resin Transfer Molding. Part I: SCRIMP Based on a HighPermeable Medium. Polym. Compos. 1998, 19, 807–817. [CrossRef]
112. Loos, C.; Sayre, J. RFI and SCRIMP Model Development and Verification. Available online: https://ntrs.nasa.gov/api/citations/
20050169561/downloads/20050169561.pdf (accessed on 21 December 2021).
120. Carosena Meola, S.B.; Carlomagno, A.G.M. Infrared in the Evaluation of Aerospace Composite Infrared Thermography to Composites;
Woodhead Publishing: Sawston, UK, 2017; ISBN 9780857092113.
J. Compos. Sci. 2022, 6, 172 30 of 30
121. Oxford, A.P.M. Introduction to Aerospace Materials Woodhead Publishing in Materials; Elsevier: Amsterdam, The Netherlands, 2012;
ISBN 9781855739468.
122. Campbell, F.C. Manifacturing Process for Advanced Composites; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780874216561.
139. Thagard, J.R.; Okoli, O.I.; Liang, Z.; Wang, H.P.; Zhang, C. Resin Infusion between Double Flexible Tooling: Prototype Development. Compos. Part A Appl. Sci. Manuf. 2003, 34, 803–811. [CrossRef]
140. Thagard, J.R.; Okoli, O.I.; Liang, Z. Resin Infusion between Double Flexible Tooling: Evaluation of Process Parameters. J. Reinf.
Plast. Compos. 2004, 23, 1767–1778. [CrossRef]
141. Kuppusamy, A. Florida State University Libraries Development of Framework for Rapid Tool Manufacture for RIDFT Process.
Ph.D. Thesis, Florida State University, Tallahassee, FL, USA, 2003.