Nanobioengineered-based hybrid electrochemical biosensors exploit the synergistic properties of hybrid systems that connect biomolecules with nanomaterials to engineer highly sensitive biosensing platforms for the specific electrochemical detection of different target analytes.
a GNR, graphene–gold nanorod; AuNPs, gold nanoparticles; Ap, aptamer; GA, glutaraldehyde; GCE, glassy carbon electrode; MSNPs, mesoporous silica nanoparticles; MWCNTs, multiwalled carbon nanotube; MSF, mesoporous silica thin film; APTES, (3-aminopropyl) triethoxysilane; AgNP, silver nanoparticles; CDs, carbon-dots; Chi-Py, pyrrole branched chitosan; PEG, polyethylene glycols; PANI, polyaniline. b AA, ascorbic acid; STR, streptomycin; miRNA; micro-RNA.
The significant advance in developing nanobioengineered platforms for electrochemical biosensing has been remarkable in the last five years. However, new 2D and 3D nanomaterials emerge year by year with various improved properties ranging from quantum tunneling, excellent stability, and high conductivity and versatility, which provide new opportunities to develop electrochemical biosensors with high selectivity and extremely low LODs. Furthermore, the appearance of these novel nanostructured materials has led to the implementation of advanced and ultrasensitive biodetection tools (Table 3).
aPSA, prostate-specific antigen; HER2, human epidermal growth factor receptor 2; AXL, tyrosine kinase; CaMV35S, cauliflower mosaic virus 35S; SAMs, self-assembled monolayers; MIPs, molecular imprinted polymers; miRNA, micro-ribonucleic acid; CA19-9, carbohydrate antigen 19-9; CA125, carbohydrate antigen 125; NMP-22, nuclear matrix protein-22; PKA, protein kinase A; CK2, casein kinase II; PAD, paper-based analytical devices; OVA, ovalbumin; CEA, carcinoembryonic antigen; NHE, human neutrophil elastase; NSE, neuron-specific enolase.
bHP5, hydroxylpillar[5]arene; AuNPs, gold nanoparticles; Ab, antibody; Gox, glucose oxidase; PANI, polyaniline; Cys, cysteine; MOFs, metal-organic framework; fGQDs, functionalized graphene quantum dots; anti-Dig-HRP, antibody-digoxigenin-horseradish peroxidase; ssDNA, single-strand DNA; MWCNT, multiwalled carbon nanotube; CNT, carbon nanotube; PEI, polyethyleneimine; GCE, glassy carbon electrode; SPAuE, screen-printed gold electrode; MNPs, metallic nanoparticles; Fc, ferrocene; MPBA, 4-mercaptophenylboronic acid; QD, quantum dots; ITO, indium tin oxide; DSN, duplex-specific nuclease; PET, polyethylene terephthalate; GO, graphene oxide; PVA, poly(vinyl alcohol); GS, graphene sheet; GNR, graphene-gold nanorod; rGO, reduced graphene oxide; UT, ultrathin; PEG, polyethylene glycol; MB, methylene blue; THI, electron-mediating thionin; PB, Prussian blue; PEDOT, poly(3,4-ethylenedioxythiophene), SPCE, screen-printed carbon electrode; MSF, mesoporous silica thin film; PNE, polynorepinephrine; IL, ionic liquid; ERGO, electrochemically reduced graphene.
cCV, cyclic voltammetry; EIS, electrochemical impedance spectroscopy; DPV, differential pulse voltammetry; XRD, X-ray diffraction; XPS, X-ray photoelectron spectroscopy; FTIR, infrared spectroscopy; UV-Vis, ultraviolet visible spectroscopy; SEM, scanning electron microscopy; TEM, transmission electron microscopy; SWV, square wave voltammetry.
dLOD, limit of detection.
Biosensor technology based on nanobiohybrid materials represents a vast field that significantly impacts healthcare, the environment, and food quality control. These functional platforms promote target molecule detection with high specificity and sensitivity, particularly in the biomedical field [105][106][107][108][71][109]. Furthermore, the rational design of the nanobiohybrids has been demonstrated to enhance the response and long-term stability of the resultant devices due to the incorporation of nanomaterials with improved properties that promote a favorable nanoenvironment for bioreceptors anchoring. Besides, the versatility of nanomaterials facilitates the conjugation with molecules by multiple conjugation chemistry, opening options to detect numerous target molecules.
Electrochemical-based nanohybrid biosensors have the potential to solve most of the limitations and concerns of bioanalysis and diagnostic tests while maintaining the required sensitivity, selectivity, and LOD to face real needs. Besides, integrating sample preparation into the device allows the possibility of direct analysis within a sample matrix and offers opportunities for new strategies of long-term analysis in vivo, among many other exciting applications. Electrochemical nanohybrid biosensors are particularly suitable for miniaturization and integration in microfluidic devices, thus reducing the consumption of reagents and samples {Formatting Citation}. Applications include detecting whole cells, cell components, proteins, and small molecules to address diagnostics and food and environmental control tasks online and in real-time, but still require more sophisticated platforms with additional elements, such as sample preparation. Although nanobioengineered biosensors are an affordable analytical strategy relative to gold standard detection methods, the development of large-scale electrochemical nanobiosensors is still challenging because they require state-of-the-art technologies for their production in a reproducible and stable manner, directly influencing the cost of the sensing device [109][110]. This apparent drawback could be overcome by scaling, automation, and mass manufacturing to lower costs through advanced methods in elaborating cost-affordable and disposable electrochemical nanobiosensors based on additive manufacturing, including screen inkjet 3D printing or microfabrication technologies [111][110][112][113].
Overall, this review exemplified nanobiosensors mainly based on screen-printed electrodes modified with nanohybrids conjugated with highly specific bioreceptors for enhanced biosensing. Yet, the richness in the art of biosensors deserves deeper exploration and support of exciting new ideas. Overall, nanobiohybrids are paving the way in the pioneering development of highly sensitive and selective electrochemical nanobiosensors and represent remarkable research advances that are a step forward in increasing the impact of this exciting, cutting-edge technology in the field of biomarker detection of clinical interest [110].
This entry is adapted from the peer-reviewed paper 10.3390/molecules27123841