Regular, structured PE, provided it develops and sustains cardiorespiratory fitness, improves efficiency of adaptive immune system in human across all ages. Animal and human studies support the hypothesis that PE improves adaptive immunity by preventing the excessive accumulation of memory T lymphocytes in the body. Naïve T cells (e.g., CD4+ helper cells, CD8+ cytotoxic cells) circulate between the blood and the lymphatic system until they come into contact with antigens (on antigen presenting cells) recognised by naïve T receptors; this contact transforms naïve T cells into activated T cells that further differentiate to memory T lymphocytes. Memory T lymphocytes have a lower antigen activation threshold, a higher rate of proliferation and a better peripheral tissue and secondary lymphatic tissue penetration than naïve T cells, thus responding more quickly, in more tissues and more forcefully to a repeated antigen challenge. The process of PE promotes redistribution of CD4+ and CD8+ antigen-experienced memory T lymphocytes from the lymphatic tissue to the blood vessels, followed by migration of memory T lymphocytes to the peripheral tissue where they are eliminated by contact with pro-apoptotic molecules (ROS, cytokines and glucocorticoids). This reduction in the number of memory T lymphocytes is assumed to trigger a compensatory increase in the number of naïve T lymphocytes (T cells not yet in contact with a specific antigen) by a negative feedback loop governing the ratio of memory to naïve T lymphocytes [
195].
6. Physical Activity Attenuates AD Neuroinflammation
6.1. Animal Studies
In various AD animal models, PE reduces hippocampal inflammation and the further hippocampal Aβ products deposition by: (a) an up-regulation of disintegrin and metalloproteinase 17 mRNA and down-regulation of BACE1 mRNA in ageing rats [
198]; (b) an attenuation of brain GSK3α/β and/or CDK5 activity [
197,
199,
200,
201,
202,
203,
204,
205,
206,
207]; (c) a reduced APP phosphorylation [
197]; (d) an attenuated activity of tau kinases that reduces tau phosphorylation and also reduces tau kinase mediated APP phosphorylation and γ-secretase activation [
197,
208]; (e) an attenuation of neuroinflammation stimulated indoleamine-2,3-dioxygenase activity by the anti-inflammatory cytokine IL10 [
196,
209], and (f) an attenuated phosphorylation of pro-inflammatory p38 and JNK molecules, due to a reduced MAPK and NFκB signalling [
89].
6.2. Human Studies
The effect of exercise on inflammation markers in AD patients was recently evaluated in 16 weeks long, randomized controlled trial with 198 participants (average age 70 years, male and female participants), distributed among control, moderate and high exercise groups. The outcomes of PE were: (a) a small increase in plasma IL6 after PE, (b) a reduced IFNγ concentrations in APO ε4 carriers, (c) no significant effect on cerebrospinal fluid (CSF) levels of cytokines IL-10, -13, -2, -6, -8, and TNFα, and (d) the marker for myeloid cells 2 trigger receptor (measuring microglial activation) was significantly increased in CSF. The recommendations, for future evaluations of exercise-elicited effects on pro-inflammatory markers in patients with AD, were: to evaluate the duration and type of PE, to increase the number of participating patients, and to stratify the effects of exercise protocol on different stages of AD, from pre-clinical to severe AD [211].
7. Physical Activity Attenuates AD Progression
7.1. Muscle Activity Modulates Cognition via Muscle-Brain Interactions
The intensity of PE leads to a proportional increase in the release of adiponectin from adipose tissue, and IGF1 from the liver and contracting muscles. These signalling molecules cross the BBB and modulate brain activity. Adiponectin brain actions support neurogenesis, learning, memory formation and ameliorate depression-like behaviour [
176]. IGF1 supports normal cognition directly by upregulating hippocampal BDNF expression and adult neurogenesis, and indirectly by increasing Aβ peptide brain clearance, stimulating Aβ peptide degradation by insulin-degrading enzyme (IDE) and increasing cellular uptake and lysosomal degradation of Aβ peptide [
176,
212]. Physical exercise in mammals also stimulates the release of skeletal muscle myokines cathepsin B and irisin (also discussed in
Section 4.). Both of them enhance neurogenesis, learning, memory and depression-free mood by stimulating BDNF brain expression [
176].
Irisin inhibits the binding between Aβ oligomers and neurons, thus preventing eIF2α phosphorylation (the phosphorylated form acts as an inhibitor of its own guanine nucleotide exchange factor) and inhibition of protein synthesis [
213]. In non-demented humans, the levels of CSF irisin increase with ageing. Patients with AD have normal irisin plasma levels, concomitant with reduced CSF irisin levels. Hippocampal FNDC5/irisin is reduced in moderate-to-late AD, but not in MCI [
213]. A recent study reported that CSF irisin levels were positively correlated with CSF BDNF and Aβ42 CSF levels, and with MMSE scores, but not with CSF total tau. Therefore, decreased CSF irisin and BDNF levels do not seem to be associated with total tau but with brain amyloid pathology. Compared to non-demented controls, patients with AD had reduced CSF levels of BDNF and Aβ42, increased levels of CSF total tau, and lower cognitive scores [
214].
Increased BDNF brain expression is also elicited by an increased sympathetic nervous system activity and elevated blood concentration levels of ketone bodies during PE [
176]. BDNF attenuates Aβ peptide toxicity on neurons, promotes synaptic plasticity by increasing the strength of synaptic connections, promotes LTP and by extension memory formation, learning and cognition, therefore is essential for normal hippocampal neurogenesis and development of hippocampal neural circuits [
215]. Interventions to increase brain BDNF in human could improve learning and memory, ameliorate AD pathology and mood disorders [
216,
217,
218,
219,
220,
221].
7.2. Human Studies on Old Age Health Subjects
Changes in hippocampal volume, in response to different levels of PA, can occur within weeks. In young to middle-aged adults, a six-week aerobic training exercise intervention transiently increased the hippocampal volume (due to an increase in hippocampal myelination). This observed increase was reversed after six weeks without aerobic exercise [
222].
Memory function and plasma values of factors BDNF, IGF1, VEGF or platelet-derived growth factor C were measured before and after a 3-month aerobic exercise regime in 40 humans, age 60–77 years. Although the aerobic exercise regime improved memory function, there were no concomitant changes in the measured plasma values. Explanations given for the observed discrepancy were: a high intra-individual variability of base plasma values, a low number of participants, diurnal variation of measured factors due to sex and/or other interfering metabolic processes (e.g., food intake) [
223].
56 healthy elderly participants, male and female, (average age 68) were involved in 12 weeks randomised physical training study (high resistance training only (80% of one repetition maximum (1RM), low resistance training only (20% 1RM), or mixed low resistance training (20% and 40% 1RM)). BDNF levels were increased in males only of the mixed low resistance training group [
224].
There is a lack of controlled, randomised studies that evaluate the effect of PE on systemic and brain pro-inflammatory markers in patients with AD. A two-months aerobic exercise regime improved quality of life and psychological wellbeing parameters, and reduced systemic pro-inflammatory markers (e.g., TNFα) in patients with AD (age 67 to 75 years, male and female participants) [
210]. The effect of exercise on inflammation markers in AD patients was recently evaluated in 16 weeks long, randomized controlled trial with 198 participants (average age 70 years, male and female participants), distributed among control, moderate and high exercise groups. The outcomes of PE were: (a) a small increase in plasma IL6 after PE, (b) a reduced IFNγ concentrations in APO ε4 carriers, (c) no significant effect on cerebrospinal fluid (CSF) levels of cytokines IL-10, -13, -2, -6, -8, and TNFα, and (d) the marker for myeloid cells 2 trigger receptor (measuring microglial activation) was significantly increased in CSF. The recommendations, for future evaluations of exercise-elicited effects on pro-inflammatory markers in patients with AD, were: to evaluate the duration and type of PE, to increase the number of participating patients, and to stratify the effects of exercise protocol on different stages of AD, from pre-clinical to severe AD [
211].
7.3. Human Studies on Persons with AD
Cognition and molecular biomarkers were evaluated in two subgroups of nondemented persons with a family history of Alzheimer’s disease; subgroup + APO ε4 (with APO ε4 genotype) and subgroup—APO ε4 (without the APO ε4 genotype allele), and compared to their senior functional physical fitness test values. The + APO ε4 subgroup had a lower cognitive score, when performing cognitive tasks with a higher visuospatial working memory load, compared to the—APO ε4 subgroup. There were no significant changes in the levels of molecular markers IL1β, BDNF, Aβ40 and Aβ42 between the two subgroups. Compared to the + APO ε4 subgroup, the—APO ε4 subgroup had a better cardiorespiratory fitness score, and this difference was positively correlated with the higher cognitive fitness in the—APO ε4 subgroup [
177].