Atherosclerosis is the pathology behind life threatening cardiovascular disease outcomes such as heart infarction and stroke. In the Stockholm Study project, an emphasis was placed on these important diseases prevalent in populations. First, a sample of 82 patients with periodontitis and 31 without periodontal disease were examined for oral health parameters, atherosclerosis and its risk factors. Carotid artery ultrasonography was performed where the common carotid artery intima-media thickness (IMT) and lumen diameter were measured, and the intima-media area (cIMA) calculated. The relationship between IMT and cIMA as dependent variables and periodontal disease, age, gender, body mass index, heredity for atherosclerosis, diabetes, hypertension, plasma cholesterol, smoking and education as independent variables, was analyzed using a multiple logistic regression model [
2]. The result showed that the mean values of IMT and cIMA were significantly higher in patients with periodontal disease than in those without (
p < 0.001 in both variables). The regression analysis identified periodontitis as a principal independent predictor of common carotid artery cIMA (OR 5.20;
p <0.05) and IMT (OR 4.64;
p < 0.05). It could thus be concluded that periodontal disease is associated with the development of early atherosclerotic carotid artery lesions [
2]. The patients with periodontitis also had significantly higher total cholesterol (
p < 0.01), low-density lipoprotein cholesterol (
p < 0.05), and triglycerides (
p < 0.01) than those without periodontitis. As discussed in more detail below, specific periodontal microorganisms seemed to induce a host response, reflected in increased concentrations of matrix metalloproteinase-8 and -9 (MMP-8 and MMP-9) in gingival pockets as well as in plasma, possibly triggering their up-regulation in blood [
7]. These inflammatory markers indicate collagen degradation in tissue level [
8] and have been used in studies investigating the associations between periodontitis and systemic health in general [
9]. However, when discussing the role of MMPs in general regarding connection with periodontitis, gender differences and smoking habits also need to be taken into account. Virtanen et al. [
10] showed in the Stockholm Study material that MMP-13 may have gender implications in periodontitis.
The reason why infections such as oral infections associate with cardiovascular diseases are thought to be the subsequent chronic and often subclinical inflammation that, in turn, triggers pathogenic alterations in the intima of blood vessels leading to lipid and mineral accumulation and then to atheroma formation. C-reactive protein (CRP) is a known serum marker of inflammation, and it has been shown to be associated with atherosclerosis [
11]. In the Stockholm Study, however, in the patients examined with carotid artery ultrasonography, this association could not be found. The cIMA and IMT did link to periodontitis as said above, but neither of these variables showed association with CRP values [
12,
13]. However, as stated above, other elevated inflammatory markers were nevertheless found in the patients with atherosclerosis and periodontitis. Periodontitis was found to predict increased MMP-9 and tissue inhibitor of matrix metalloproteinases (TIMP-1) and their ratio MMP-9/TIMP-1. These values were indeed significantly higher in plasma from subjects with periodontal disease and atherosclerosis when compared with healthy subjects (OR 2.58, 5.53 and 3.41, respectively). Classical atherosclerosis risk factors, such as increased total cholesterol, age, and sex (female), were significant predictors in the model discussed here [
14].
Correspondingly, other inflammatory markers such as leukotriene B
4 and cysteinyl-leukotrienes were detected in gingival crevicular fluid (GCF) from subjects with a high dental plaque index (PLI > 0.3), supporting an increased leukotriene formation in periodontitis [
15]. Patients with atherosclerotic plaques had significantly elevated concentrations of cysteinyl-leukotrienes in their GCF when compared with those without visible dental plaque. Thus, the results suggest that increased leukotriene formation may also represent a possible link between periodontitis and atherosclerosis and might be used as risk factor marker for the diseases [
15,
16].