3.2. Solar Hot Water Systems
3.2.1. Direct Solar Hot Water Production System
A direct solar hot water system is like a direct solar hot air system with the process water being the working fluid that passes through the solar collector. A direct solar hot water system can be with or without storage. Based on the piping layout, a direct solar hot water system with storage for a non-freezing working fluid can have four classifications: Four-Pipe Storage, Two-Pipe Storage, Multiple Tank Storage, and Variable-Volume Storage Configuration.
The Four-Pipe Storage Configuration is suitable for space heating and residential applications. One disadvantage is that the collector inlet temperature might exceed its limit as the collector is fed from the mixed tank at a temperature nearly that of the load supply. However, controlling this system is very convenient irrespective of the application area.
A two-pipe storage layout is a modification of the four-pipe arrangement with both the inlet and outlet pipes amalgamated to pass through a single storage tank. Such systems provide better performance than the four-pipe storage configuration by solving the problem of an excessively heated collector inlet. Nevertheless, one big disadvantage is that the solar collector and the storage cannot supply heat energy at the same time unless the load flow rate is higher than the collector flow rate.
A multiple tank storage arrangement provides better performance than a two-pipe storage configuration by keeping the collector inlet temperature under the load supply temperature when there is no load. Such aspects allow this system to have a better thermocline state. Nevertheless, such systems are quite expensive and involve heat loss.
A variable volume storage system delivers better performance than the other three configurations. Such systems consist of two variable storage tanks, one for hot fluid and the other for cold fluid. In no-load conditions during the daytime, cold water passes through the solar collector and is stored in the hot tank. In the off-period, hot water can be taken out of the hot tank for use. However, a variable storage system does not provide good performance in cloudy weather.
3.2.2. Indirect Solar Hot Water Production System
An indirect solar hot water system has quite a simple layout with a solar collector, two fluid loops, and a heat exchanger. In an indirect solar water system, antifreeze protection usually involves the application of an antifreeze solution/heat oil in the solar collector loop.
3.3. Steam Generation Systems
An indirect steam generation system usually consists of a collector loop with a heat transfer fluid to produce heat energy to be transferred via a heat exchanger to another fluid (normally water or air) to produce steam/hot air/hot water under pressure as per industrial process requirement.
4. Approaches towards Solar Industrial Process Heat Integration
4.1. Solar Heat Integration Methodologies
Suitable design propositions and appropriate integration layouts have always been a core subject of investigation for researchers to obtain better performance from SHIP integration. There are several approaches for the development and evaluation of suitable solar heat integration methodologies, such as time-slice model (TSM), time average model (TAM), total site analysis (TSA), and pinch analysis.
Industrial processes can be both continuous and batch processes. In batch processes, the heat exchange between the hot and cold utilities is limited
[19]. Depending on the mode of operations, not all of the integration approaches can provide the same solution.
Pinch technology is a popular and widely used methodology for the perusal of industrial processes, more particularly to locate the least permissible temperature difference between the hot and cold utility. The term pinch analysis derives from the term pinch technology, and also refers to the use of mechanisms, Socratic methods, and algorithms to reach the pinch point and thus find the most suitable integration concept for financial savings. Linhoff and Flower, and Umeda et al., first introduced pinch analysis as two individual research groups
[19][20].
For batch processes, two commonly used approaches are the Time Average Model (TAM) and Time Slice Model (TSM), both developed by Kemp and Macdonald
[21][22][23]. Both TAM and TSM methodologies were originated from pinch technology; however, the main distinction between them is the consideration of time factors such as process scheduling or time availability. In TAM, the operations of a batch process occur ignoring the sequence, and at any time. In TSM, the beginning and the finishing time of the involved operations can be integrated, and, within these slices, heat integration can be performed as a continuous process
[19][24].
Another design approach is Total Site Analysis (TSA), which involves thermal profiles of the source and sinks site i.e., the total site, as developed by Dhole and Linnhoff in 1993. In the TSA method, grand composite curves (GCCs) of the associated processes of a central system are used to build the site source-site sink profiles (SSSP) which help to reach the optimal design considerations.
4.2. Steps to Identify the Optimal Integration Points
Although various industrial sectors are becoming interested in implementing SHIP projects, most of the solar heat integrations have been made by paying more attention to developing the collector’s design, categorizing industries by similar unit operations, conceptual assumptions regarding the overall heat demand, the temperature level of the processes, the production rate of the factories on a monthly/yearly basis and the statistics from single demonstration plants. Specific instructions for the integration of solar thermal process heating systems in existing industrial plants are not firm yet. However, some general guidelines have been constructed, as published by the International Energy Agency under task 49 of The Solar Heating and Cooling Programme (IEA SHC Task 49), based on the Ph.D. thesis of Bastian Schmitt
[25]. Some major steps were established along with some leading factors as presented in
Figure 2. For the overall grouping of SHIP integrating systems, three leading parameters were identified, such as the assessment of the existing integration strategies, heat transfer medium, and the difference in the heat integration between the supply level and process-level. Besides, clear distinctions between supply level and process-level were found to be necessary for identifying the specific boundary conditions of suitable solar process heat integration in industries
[25][26].
Figure 2. Steps towards the selection and identification of suitable integration points of solar process heat integration in industries. Modified from
[26][27].
5. Status of Integration Parameters of Solar Process Heat in Existing Plants
SHIP projects are being carried out worldwide in a wide range of industries and power plants. The most promising industrial sectors for solar process heat integration are food, textile, and mining. According to the ship plant database, a very useful online portal, developed by AEE-Institute for Sustainable Technologies (AEE INTEC), about 346 plants exist in 44 countries worldwide. In 2020, countries having the highest number of SHIP installations were China, Mexico, Germany, India, and Spain, with a total number of 30, 16, 10, 3, and 3 projects, respectively. Other important countries were Belgium, Austria, Cyprus, Italy, Malaysia, Morocco, the Netherlands, and Turkey
[28][29][30].
5.1. Global Integration Scenario in the Food Industry
The food industry is the most prominent industrial sector, including the food manufacturing, beverage, and agriculture sectors, for solar integration with low-temperature processes (<150 °C). Together, food and beverages share 47% of the total globally installed projects
[28]. In the agriculture sector, solar process heat is gaining the potential for greenhouse heating in horticulture and for preserving fruits and vegetables. The most common operations in the food industry include general process heating, pasteurization, cleaning, cooking, space heating, and drying
[31][32][33].
5.2. Global Integration Scenario in Textile & Leather Industry
The textile and leather industry is an emerging sector in solar process heat integration. The installed thermal capacity in this sector is 26 MWth which is 5% of the globally installed thermal capacity for solar heat integration. Mostly applied operations include retaining, bleaching, and process heating.
5.3. Global Scenario of SHIP Integration in Mining Industries
The mining industry is another dominating sector for solar thermal integration and has the highest share of installed thermal capacity (78%). The main operation includes cleaning, extraction, and process heating. Of the world’s largest three SHIP plants, two are in the mining industry (Oman and Chile). There is a total of 14 mining plants currently in operation with eight plants having solar process heat integration at the process level and four plants at the supply level
[34].
5.4. Comparison of the Supply Level, Process Level, and Other Point Integration of Solar Industrial Process Heat in Percentile
As discussed in the previous section, a distinction between process level and supply level integration is required for checking the suitability of solar process heat integration in certain industrial sectors. In industries, solar process heat integration generally occurs at the supply level, process level, and other points designed by process suitability.
In the food manufacturing, beverage, and agriculture industry, most of the solar process heat integration occurs at the supply level compared to the process level, which is clear from the following figure. Process heating operation (general and other) has the highest number of projects with supply level integration (38 projects), followed by cleaning (18 projects), pasteurization (12 projects), cooking (8 projects), and space heating (6 projects).