Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis, as the clinical symptoms of this disease are only presented at an advanced stage [1]. At a global level, the incidence of PDAC is expected to continue increasing as observed by the trend in the past consecutive years [2-6]. On the other hand, the available US Food and Drug Administration-approved biomarker for PDAC, CA 19-9, is not reliable for diagnostic purposes but is rather useful for monitoring treatment response among PDAC patients [7, 8]. Nevertheless, there is an urgent need to identify reliable biomarkers for both diagnosis (specifically for the early detection) and ascertain prognosis, as well as to monitor treatment response and tumour recurrence of PDAC [9]. In recent years, proteomic technologies have grown exponentially at an accelerated rate for a wide range of applications in cancer research [10]. Interestingly, myriad of research mainly focused on the identification of potential biomarkers for the use of early detection and/or diagnosis of PDAC. Nonetheless, it is unfortunate that several other studies too have concurrently reported that these ‘identified potential biomarkers’ either as lacking in specificity and/or has prognostic values, instead. [11-16]. Likewise, studies conducted on biomarkers to ascertain the prognosis of PDAC, as well as to monitor treatment response and predict tumour recurrence in PDAC had also evidently shown conflicting results [17-22]. In view of this, the identification and/or implementation of protein-based biomarkers with improved specificity and sensitivity for clinical utility for PDAC remains much to be desired [9]. On the bright side though, the integration of multi-omics techniques, as well as further research on other novel technologies such as nanoparticle-enabled blood test [23] and artificial intelligence [24]), is hoped to lead to the discovery of superior biomarkers for PDAC that could be implemented into clinical practice in the near future.
REFERENCES
1. Deshwar, A. B.; Sugar, E.; Torto, D.; De Jesus-Acosta, A.; Weiss, M. J.; Wolfgang, C. L.; Le, D.; He, J.; Burkhart, R.; Zheng, L.; Laheru, D.; Yarchoan, M., Diagnostic intervals and pancreatic ductal adenocarcinoma (PDAC) resectability: A single-center retrospective analysis. Ann Pancreat Cancer 2018, 1, 13.
2. Khalaf, N.; El-Serag, H. B.; Abrams, H. R.; Thrift, A. P., Burden of pancreatic cancer: From epidemiology to practice. Clin Gastroenterol Hepatol 2021, 19 (5), 876-884.
3. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 2021, 71 (3), 209-249.
4. Ilic, M.; Ilic, I., Epidemiology of pancreatic cancer. World J Gastroenterol 2016, 22 (44), 9694-9705.
5. Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P., Estimating the world cancer burden: GLOBOCAN 2000. Int J Cancer 2001, 94 (2), 153-6.
6. Parkin, D. M.; Pisani, P.; Ferlay, J., Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 1993, 54 (4), 594-606.
7. Al-Shamsi, H. O.; Alzahrani, M.; Wolff, R. A., The clinical utility of normal range carbohydrate antigen 19-9 level as a surrogate marker in evaluating response to treatment in pancreatic cancer - a report of two cases. J Gastrointest Oncol 2016, 7 (3), E45-E51.
8. Poruk, K. E.; Gay, D. Z.; Brown, K.; Mulvihill, J. D.; Boucher, K. M.; Scaife, C. L.; Firpo, M. A.; Mulvihill, S. J., The clinical utility of CA 19-9 in pancreatic adenocarcinoma: Diagnostic and prognostic updates. Curr Mol Med 2013, 13 (3), 340-351.
9. Vellan, C. J.; Jayapalan, J. J.; Yoong, B.-K.; Abdul-Aziz, A.; Mat-Junit, S.; Subramanian, P., Application of proteomics in pancreatic ductal adenocarcinoma biomarker investigations: A review. Int J Mol Sci 2022, 23 (4), 2093.
10. Sobsey, C. A.; Ibrahim, S.; Richard, V. R.; Gaspar, V.; Mitsa, G.; Lacasse, V.; Zahedi, R. P.; Batist, G.; Borchers, C. H., Targeted and untargeted proteomics approaches in biomarker development. Proteomics 2020, 20 (9), 1900029.
11. Guo, X.; Lv, X.; Fang, C.; Lv, X.; Wang, F.; Wang, D.; Zhao, J.; Ma, Y.; Xue, Y.; Bai, Q.; Yao, X.; Chen, Y., Dysbindin as a novel biomarker for pancreatic ductal adenocarcinoma identified by proteomic profiling. Int J Cancer 2016, 139 (8), 1821-9.
12. Zhu, D.; Zheng, S.; Fang, C.; Guo, X.; Han, D.; Tang, M.; Fu, H.; Jiang, M.; Xie, N.; Nie, Y.; Yao, X.; Chen, Y., Dysbindin promotes pancreatic ductal adenocarcinoma metastasis by activating NF-κB/MDM2 via miR-342–3p. Cancer Lett 2020, 477, 107-121.
13. Kim, J.; Bamlet, W. R.; Oberg, A. L.; Chaffee, K. G.; Donahue, G.; Cao, X.-J.; Chari, S.; Garcia, B. A.; Petersen, G. M.; Zaret, K. S., Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Sci Transl Med 2017, 9 (398), 5583.
14. Le Large, T. Y. S.; Meijer, L. L.; Paleckyte, R.; Boyd, L. N. C.; Kok, B.; Wurdinger, T.; Schelfhorst, T.; Piersma, S. R.; Pham, T. V.; van Grieken, N. C. T.; Zonderhuis, B. M.; Daams, F.; van Laarhoven, H. W. M.; Bijlsma, M. F.; Jimenez, C. R.; Giovannetti, E.; Kazemier, G., Combined expression of plasma thrombospondin-2 and CA19-9 for diagnosis of pancreatic cancer and distal cholangiocarcinoma: A proteome approach. Oncologist 2020, 25 (4), e634-e643.
15. Park, J.; Choi, Y.; Namkung, J.; Yi, S. G.; Kim, H.; Yu, J.; Kim, Y.; Kwon, M.-S.; Kwon, W.; Oh, D.-Y.; Kim, S.-W.; Jeong, S.-Y.; Han, W.; Lee, K. E.; Heo, J. S.; Park, J. O.; Park, J. K.; Kim, S. C.; Kang, C. M.; Lee, W. J.; Lee, S.; Han, S.; Park, T.; Jang, J.-Y.; Kim, Y., Diagnostic performance enhancement of pancreatic cancer using proteomic multimarker panel. Oncotarget 2017, 8 (54), 93117-93130.
16. Chen, J.; Chen, L.-J.; Xia, Y.-L.; Zhou, H.-C.; Yang, R.-B.; Wu, W.; Lu, Y.; Hu, L.-W.; Zhao, Y., Identification and verification of transthyretin as a potential biomarker for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2013, 139 (7), 1117-1127.
17. Zhou, Q.; Andersson, R.; Hu, D.; Bauden, M.; Sasor, A.; Bygott, T.; PawŁowski, K.; Pla, I.; Marko-Varga, G.; Ansari, D., Alpha-1-acid glycoprotein 1 is upregulated in pancreatic ductal adenocarcinoma and confers a poor prognosis. Transl Res 2019, 212, 67-79.
18. Zhang, Y.; Wang, Z.; Bai, X.; Xu, Y., AGP1 acts as a biomarker for diagnosis of laryngeal cancer. Int J Clin Exp Pathol 2018, 11 (10), 4996-5001.
19. Peng, H.; Chen, R.; Brentnall, T. A.; Eng, J. K.; Picozzi, V. J.; Pan, S., Predictive proteomic signatures for response of pancreatic cancer patients receiving chemotherapy. Clin Proteom 2019, 16 (1), 31.
20. Sierko, E.; Wojtukiewicz, M. Z.; Zimnoch, L.; Tokajuk, P.; Ostrowska-Cichocka, K.; Kisiel, W., Protein Z/protein Z-dependent protease inhibitor system in loco in human gastric cancer. Ann Hematol 2014, 93 (5), 779-784.
21. Hu, D.; Ansari, D.; Zhou, Q.; Sasor, A.; Said Hilmersson, K.; Andersson, R., Galectin 4 is a biomarker for early recurrence and death after surgical resection for pancreatic ductal adenocarcinoma. Scand J Gastroenterol 2019, 54 (1), 95-100.
22. Conde-Rodríguez, I.; Delgado-López, G.; Armenta-Castro, E.; Ramírez-Díaz, I.; Anaya-Ruiz, M.; Gutiérrez-Quiroz, C. T.; Flores-Alonso, J. C.; Reyes-Salinas, S.; Vazquez-Zamora, V. J.; Ceja-Utrera, F. J.; López-Colombo, A.; Reyes-Leyva, J.; López-López, G.; Vallejo-Ruiz, V., Evaluation of serum levels and expression of galectin-4 in cervical cancer. Biomed Res Int 2020, 2020, 6756723.
23. Caputo, D.; Caracciolo, G., Nanoparticle-enabled blood tests for early detection of pancreatic ductal adenocarcinoma. Cancer Lett 2020, 470, 191-196.
24. Almeida, P. P.; Cardoso, C. P.; de Freitas, L. M., PDAC-ANN: An artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression. BMC Cancer 2020, 20 (1), 82.

| Target * | Name | Clinical Utility | References |
|---|---|---|---|
| DNAs | K-ras mutation | Diagnosis | [23] |
| Methylated ADAMTS1 and BNC1 | Early diagnosis | [24] | |
| TP53 mutation | Prognosis | [25] | |
| Mutations of BRCA2, EGFR, ERBB2 and KDR | Monitoring treatment response | [26] | |
| Peritoneal lavage tumour DNA | Prognosis/Monitoring tumour recurrence | [27] | |
| mRNAs | WASF2 mRNA | Early diagnosis | [28] |
| EVL mRNA | Prognosis | [29] | |
| FAM64A mRNA | Prognosis | [30] | |
| MicroRNAs (miR) [31] ** | miR-181c miR-210 |
Diagnosis | [32] |
| miR-10b miR-155 miR-216 |
Prognosis | [33] | |
| miR-196a | Prognosis | [34] | |
| miR-21 | Diagnosis/Prognosis/Monitoring treatment response | [32,35,36] | |
| miR-155 | Monitoring treatment response | [37] | |
| miR-142-5p miR-506 miR-509-5p miR-1243 |
Monitoring treatment response | [36] | |
| miR-451a | Prognosis/Monitoring tumour recurrence | [38] | |
| Long noncoding RNAs | SNHG15 | Early diagnosis | [39] |
| HOTAIR MALAT-1 |
Prognosis | [40] | |
| LINC00460 | Prognosis | [41] | |
| PVT1 | Monitoring treatment response | [42] | |
| Circulating tumour cells | Diagnosis | [43] | |
| Prognosis | [44] | ||
| Vimentin (surface marker) | Monitoring treatment response | [45] | |
| Monitoring tumour recurrence | [46] | ||
| Metabolites | Panel of acetylspermidine, diacetylspermine, indole-derivative and two lysophosphatidylcholines | Early diagnosis | [47] |
| Polyamines | Diagnosis | [48] | |
| Ethanolamine | Prognosis | [49] | |
| Lactic acid L-Pyroglutamic acid |
Monitoring treatment response | [50] | |
| Carbohydrates (glycan) | Alpha-2,6-linked sialylation and fucosylation of tri- and tetra-antennary N-glycans | Diagnosis | [51] |
| N-glycan branching: alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A | Early diagnosis | [52] | |
| β1,3-N-acetylglucosaminyltransferase 6 | Prognosis | [53] | |
| Hyaluronan | Monitoring treatment response | [54] |
ADAMTS1—A disintegrin and metalloproteinase with thrombospondin motifs 1; BNC1—zinc finger protein basonuclin-1; BRCA2—Breast cancer susceptibility gene-2; EGFR—Epidermal growth factor receptor; ERBB2—Erb-b2 receptor tyrosine kinase 2; EVL—Ena/VASP-like; FAM64—Family with sequence similarity 64 member A; HOTAIR—HOX transcript antisense RNA; KDR—Kinase insert domain receptor; KRAS—Kirsten rat sarcoma viral oncogene homolog; LINC00460—Long intergenic non-protein coding RNA 460; LDLRAD3—Low density lipoprotein receptor class A domain containing 3; MALAT-1—Metastasis associated lung adenocarcinoma transcript 1; PVT1—Plasmacytoma variant translocation 1; RNU2-1—RNA U2 small nuclear 1; SNHG15—Small nucleolar RNA host gene 15; WASF-2—Wiskott–Aldrich syndrome protein family member 2. * Recently identified protein-based biomarkers for PDAC will be discussed in the subsequent section of this review. ** This has been previously extensively reviewed by Tesfaye et al. (2019).
This entry is adapted from the peer-reviewed paper 10.3390/ijms23042093