In clinical applications for implantable biomedical instruments, the adhesion of harmful biomedical materials to the surface must be avoided. Thus, if the implanted system requires prevention of inflammation or infection in cell/tissue culture systems, an antibacterial surface property is highly desirable. Different methods for the development of antibacterial surfaces have been reported [
145,
146,
147,
148,
149,
150,
151,
152,
153,
154]. A superhydrophobic surface inspired by biological structures has become a favorable antibacterial surface due to the anti-fouling capability that could circumvent surface bacteria from adhering [
155,
156,
157,
158,
159]. Privett et al. [
155] also produced xerogels which contained silica colloids, fluoroalkoxysilane, and silane backbone. The superhydrophobic characteristics of the coated surface of the xerogel were facilitated by fluorinated silica nanoparticles for low surface energy and a hierarchical structure. The antibacterial properties of the xerogel were described by a conventional cell flow assay using Gram-negative
Pseudomonas aeruginasa (
P. aeruginasa) and Gram-positive
Staphylococcus aureus (
S. aureus). Microbial adhesion to the superhydrophobic xerogel surface was decreased by 98% and 99% relative to the blank area. The antibacterial properties of surfaces with Gram-negative bacteria were reported by Feschauf et al. [
29], using superhydrophobic polycarbonate (PC) and polyethylene (PE) and PS substrates. Using a basic casting method, the superhydrophobic PC, PE, and PS surfaces were acquired from a micro/nanostructured PDMS casting. A total of 10 μL of
E. coli was cultured to test standardized PS, PC, and PE surface anti-bacterial properties. Then, a bacterial
E. coli solution was cultivated for 24 h (
Figure 10). Fewer than 100 colony-forming units (CFUs) were observed on PS- and PE-based superhydrophobic surfaces after 24 h, whereas no bacterial growth was observed on the PC substrate. Moreover, 100 CFUs were observed each for flat PS and PC, while 25,800 were observed for PE. These findings suggest that, relative to flat surfaces, superhydrophobic surfaces efficiently reduce adhesion of bacteria to <0.1%. Because of the wide variety of anti-fouling properties, liquid slippery surfaces often have tremendous potential for various medical applications in comparison to different liquids and environmental pressures. Over a wide range of temperatures, heats, surface tensions, and multiple conditions they retain repellency [
159]. Epstein’s research team [
160] showed the importance of a slippery surface to avert binding biofilm. On a smooth, slippery surface, the bacteria were presented, which could not be anchored on the mobile interface compared to solid interface. Irrespective of the principal solid, porous structure, separate biofilm accumulations were stopped by a slippery surface over more than a week. In contrast to common, polyethylene glycol, anti-fouling surfaces, it also decreased bacterial attachment by 96–96.6%. To minimize the morbidity and mortality caused by thrombosis, Leslie et al. [
30] used slippery properties on tubing and catheters of indwelling medical devices. They developed a tethered perfluorocarbon coating (TP) at the top of the tube followed by its coating with a liquid perfluorodecalin (LP) surface to attain anti-thrombogenic and non-adhesive surfaces. The thin, moving liquid layer permitted the tethered-liquid perfluorocarbon (TLP) surface to resist fluids effectively also after the surface contacted an immiscible liquid, such as blood (
Figure 10b(i)). The surface was cleaned almost immediately from a new, whole human droplet of blood (
Figure 10b(ii)). Compared to the uncoated surfaces of acrylic and polysulfone, they showed (
Figure 10c(i)) a decrease in the adhesion and polymerization of the TLP surface. The slithery condition also decreased the adhesion of platelets in contrast to uncoated surfaces. These findings demonstrated that the smooth surface decreased fibrin polymerization and inhibited adherence, as well as plates activation. To realize an arteriogenic shunt for in vivo analysis of the anti-thrombogenic effect of the slippery surface, polycarbonate connectors, TLP-treated polyurethane cannulae, and medicinal, polyvinyl chloride (PVC)-based heart pulmonary perfusion tubes were studied. Compared with control tubes,
Figure 10c(ii) displays polymer TLP-treated tubes that minimize occlusive thrombosis post flow for 8 h. Such noteworthy, anti-fouling properties can, therefore, be used in several additional applications.