COVID-19 infections resulting in pathological kidney manifestations have frequently been reported in adults since the onset of the global COVID-19 pandemic in December 2019. Gradually, there have been an increased number of COVID-19-associated intrinsic kidney pathologies in children and adolescents reported as well. The pathophysiological mechanisms between COVID-19 and the onset of kidney pathology are not fully known in children; it remains a challenge to distinguish between intrinsic kidney pathologies that were caused directly by COVID-19 viral invasion, and cases which occurred as a result of multisystem inflammatory syndrome due to the infection.
Nephrotic syndrome appeared as the most frequently reported clinical presentation. Nephrotic syndrome is a common kidney pathology observed in children and adolescents, characterized by minimal change disease in the majority (more than 80%) [25,26]. It is defined by the inability to restrict urinary protein loss, due to alterations of perm-selectivity in the capillary walls of the glomerulus, as a result of podocyte injury. Nephrotic-range proteinuria is recognized as the equivalent of 3.5 g or more of protein identified from a 24-h urine sample collection (urine protein-creatinine ratio > 300 mg/mmol), and childhood nephrotic syndrome tends to be selective towards albuminuria [27]. In children and adolescents, approximately 95% of nephrotic syndrome presentations are idiopathic, with the remaining 5% secondary to causes such as viral diseases (e.g., Parvovirus B19, Human Immunodeficiency Virus (HIV), Hepatitis B and C), inflammatory conditions (e.g., Juvenile Idiopathic Arthritis) or rare conditions such as Amyloidosis and Henoch–Schonlein Purpura [28,29,30,31,32,33]. Although COVID-19-associated minimal-change nephrotic syndrome is increasingly reported, its epidemiology in comparison with those minimal change cases induced by other viral infections remains unclear at this point in time. The mechanisms of how COVID-19 might induce nephrotic syndrome have been postulated in several adult studies, but there is very limited data for comparison in children and adolescents. A study conducted in China by Su et al. [34], with post-mortem kidney biopsy samples, found SARS-CoV-2 virion particles in podocytes with effaced foot-processes, suggestive of direct podocytopathic injury. Another report found evidence of tubuloreticular inclusions, often a marker of viral replication and marked interferon production within endothelial cells in the glomerulus [35]. These results have been disputed, with suggestions that the ultrastructural histological findings were actually normal subcellular structures, such as clathrin-coated vesicles and multivesicular bodies [36,37]. An alternative perspective on the mechanism of COVID-19-induced nephrotic syndrome advocates that it is mediated by multiple immunological pathways. Results from basic science studies during the early days of the pandemic suggest tissue damage from SARS-CoV-2 virus is defined by the generation of a cytokine storm [38]. It is believed that podocytopathy can be triggered by the cytokine storm generating an immunological milieu with excessive production of Th2-generated cytokines. Though there are ethical controversies to consider, it was a limitation that there were no kidney biopsy-proven histopathologies from the nephrotic syndrome presentations reviewed. In steroid-sensitive nephrotic syndrome, which represents almost 99% of all idiopathic nephrotic syndrome cases in children aged 1–12 years, kidney biopsy is not usually performed unless a child does not achieve remission following a 4-week course of steroids [39]. Mechanistic associations between COVID-19 infection and nephrotic syndrome in children and adolescents may have been further ascertained with evaluation of kidney biopsy findings.
This entry is adapted from the peer-reviewed paper 10.3390/children9010003