Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases among women of reproductive age and is associated with many metabolic manifestations, such as obesity, insulin resistance (IR) and hyperandrogenism.
1. Introduction
Polycystic ovary syndrome (PCOS) is one of the most complicated and heterogeneous endocrine disorders, with a prevalence ranging from approximately 6% (applying the older diagnostic criteria: National Institutes of Health Consensus 1990) to 20% (according to the current most commonly used criteria: the Rotterdam 2003) in women of reproductive age [
1,
2,
3]. There are three criteria included in actual diagnostic criteria, including the Rotterdam 2003, the Androgen Excess and PCOS Society 2006 and National Institutes of Health Consensus 2012. Among these criteria, the Rotterdam criteria are the most extensive and widely used [
4]. According to these criteria, three characteristics are proposed: (1) clinical or biochemical hyperandrogenism or both, (2) oligo-anovulation, and (3) polycystic ovary morphology (PCOM) (ultrasonography indicating the presence of ≥12 follicles with a maximum diameter of 2–9 mm or any ovarian volume >10 mL). A woman with PCOS must meet at least two of the three characteristics, and other causes of hyperandrogenism, such as nonclassical congenital adrenal hyperplasia and hyperprolactinemia, must be ruled out [
5]. According to these diagnostic criteria, PCOS is divided into four phenotypes according to severity [
6,
7] (
Table 1). Although there are many versions of PCOS diagnostic criteria, the etiology of PCOS remains obscure. This may be explained by multiple factors, including genetics, environment, and lifestyle [
8]. PCOS also shows heterogeneity in regard to metabolic disorders [
1]. This background indicates that the daily lifestyle and diet as well as metabolites generated may have a substantial influence on the pathogenesis of PCOS. Consequently, the number of clinical and basic studies on metabolic manifestations and metabolites of PCOS has increased rapidly.
This entry is adapted from the peer-reviewed paper 10.3390/metabo11120869