Antimicrobial Lipids from Plants and Marine Organisms: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor:

Medicinal plants and marine organisms are natural sources of many antimicrobial compounds. Plant components with antimicrobial activity include alkaloids, sulfur-containing compounds, diterpenes/terpenoids, fatty acids (FA), some carbohydrates, steroidal glycosides, and phenolic compounds. Both primary and secondary metabolites are “generally recognized as safe” (GRAS) substances and the chance of triggering antimicrobial resistance is low. The most studied antimicrobial compounds of marine origin are peptides and alkaloids, contrarily to lipids. However, lipids are ubiquitously distributed in the different marine phyla, being quite abundant in some of them. Besides, several lipid classes from marine organisms have been recognized by their biological activity with a high potential to discover new antimicrobial compounds.

  • fatty acid
  • lipid extract
  • lipidomics
  • macroalga
  • marine invertebrate
  • mechanism of action
  • microalga
  • minimum inhibitory concentration
  • monoacylglycerol
  • natural antimicrobial

1. Introduction

The consumption of antibiotics in the world population is alarming. In 2016, the top five World Health Organization (WHO)’s major antibiotic consuming countries were Brazil, Turkey, Iran, Russia, and France, by decreasing order [1]. In Brazil, more than 2000 metric tons of antibiotics were consumed annually, followed by ca. 1000 metric tons in Turkey and Iran [1].
Both misuse and overuse of antibiotics has led to the development of antimicrobial resistance (AMR) in microorganisms, which has been a global problem and a growing threat for many years. Antimicrobial resistant microbes are found in people, animals, food, and the environment (hospital or other health care facilities, water, soil and air). Because of AMR, several disease conditions are becoming harder to treat, as tuberculosis, pneumonia, blood poisoning, gonorrhea, and foodborne diseases [2]. AMR leads to higher medical costs, prolonged hospital stays, and increased mortality, causing an economic burden for health care systems. The major cause of AMR is mostly due to misuse of antibiotics.
A number of 700,000 deaths occur worldwide because of drug-resistant diseases [3]. Tuberculosis causes 1.8 million deaths per year, while multidrug-resistant (MDR) tuberculosis causes 250,000 deaths per year and is a global priority for research and development. Gram-negative bacteria can cause death in days because of the lack of treatment options. By 2050, it is foreseen that drug-resistant diseases could cause 10 million deaths each year [3]. In 2017, the WHO identified a priority list of highly antimicrobial-resistant pathogenic microorganisms, also known as superbugs, that have developed survival mechanisms to circumvent the action of last-line antimicrobials (isoniazid, rifampicin, fluoroquinolone, carbapenem, third-generation cephalosporin, or vancomycin) [4]. There are twelve bacteria that have critical and high priority for treatment discovery, besides Mycobacterium tuberculosis, the causing agent of tuberculosis, including the “ESKAPE” pathogens: Enterococcus faeciumStaphylococcus aureusKlebsiella pneumoniaeAcinetobacter baumanniiPseudomonas aeruginosa, and Enterobacteriaceae [5]. Superbugs cause 33,000 deaths each year, in Europe, by antibiotic-resistant bacterial infections. Italy is the European country with one-third of all cases (11,000 deaths in total), followed by France (more than 5500 deaths) and Germany (with 2300 deaths) [6][7].
The world now lives the so-called “post-antibiotic era.” The current guidelines and recommendations from the WHO claim for an interconnected action and national action plans in a multisectoral and sustained “One Health” approach. This is aimed to tackle AMR and achieve the United Nations’ Sustainable Development Goals for 2030 toward humans, food and feed, plants and crops, environment, terrestrial and aquatic animals [8].
According to a recent WHO’s report, there are 252 antimicrobial agents in preclinical pipeline, being developed to treat WHO’s priority pathogens, but at very early stages of development [9]. Even so, very few target the most critical resistant Gram-negative bacteria, thus, they will generate little benefit over existing treatments [9]. As such, it appears that the future will come up with an increased need for new compounds with antimicrobial activity and combined therapeutic strategies, which can be effective against superbugs and bring revenue to the pharmaceutical industry. At the same time, several alternative approaches to conventional antibiotics have been extensively studied, not only to be used in the clinical field but also in animal health, control insect pest, protect agricultural crops, improve food safety, and water disinfection. Developing strategies include antimicrobial peptides (AMP), phage therapy, photodynamic antimicrobial chemotherapy (PACT), nanoparticles, probiotics, lysins, antibodies, quorum sensing inhibitors, and immunotherapeutic agents [5][10][11][12][13][14]. Combination therapy or multi-target approaches are being developed to hinder antibiotic resistance or to sensitize microorganisms to antibiotic action [15]. Another strategy to overcome AMR is the combination of conventional antibiotics with other molecules, as natural products and/or antimicrobials from natural sources, as plants and marine organisms, to enhance the antimicrobial effect against a wide range of pathogens.
Medicinal plants and marine organisms are natural sources of many antimicrobial compounds [14][16][17][18]. Plant components with antimicrobial activity include alkaloids, sulfur-containing compounds, diterpenes/terpenoids [19], fatty acids (FA) [20][21][22], some carbohydrates [23], steroidal glycosides, and phenolic compounds [24]. Both primary and secondary metabolites are “generally recognized as safe” (GRAS) substances and the chance of triggering antimicrobial resistance is low [25]. Simultaneously, marine organisms, mainly slow-moving or sessile, have developed adaptive defense mechanisms to protect themselves against pathogenic microorganisms. In some cases, marine organisms maintain associations with microbiota, being bacterial symbionts responsible by the synthesis of antimicrobial molecules [26][27].

2. Antimicrobial Lipids from Plants

Over the evolution, higher plants have developed several resilience strategies that allow them to resist or escape external attacks (e.g., microorganisms, pathogens, and predators). Their innate immune system had to be equipped with highly complex mechanisms of resistance and survival. The defense mechanisms of plants are unique and consist of both physical barriers and production of secondary metabolites. Plant secondary metabolites are formed in particular biosynthetic pathways by means of substrate-specific enzymes. The precursors of these secondary metabolites stem from primary metabolites, such as amino acids, FA, sugars, or acetyl-CoA. Some of the secondary metabolites serve as constitutive chemical barriers against the microbial attack (phytoanticipins) while others serve as inducible antimicrobials (phytoalexins) [28].
Oxylipins are a large family of plants’ secondary metabolites derived from PUFA that make part of their immune system and play key roles as antimicrobial agents. They are formed through enzymatic or radical oxidation of FA 18:2 and 18:3, in order to protect plants against pests and pathogens [29]. The enzymatic biosynthesis of these molecules is triggered by an alpha-dioxygenase (DOX) and by lipoxygenases (LOX) [30][31] that lead to the formation of the different types of molecules, including hydroxy-, hydroperoxy-, divinyl-, oxo-, and keto-derivatives of FA. Oxylipins are formed during abiotic and biotic stresses [32]. They are plant signaling molecules that can induce cell death and have an effect on the growth of eukaryotic microbes [29]. A deeper knowledge on plant response to stresses at molecular, physiological and metabolic levels will allow the development of new plant-derived antimicrobial molecules for use in the clinical field and as biopesticides [32].
The search for novel antimicrobials has led to exploring also amide derivatives of FA because they are natural self-defense agents in plants. FA amides are bioactive lipids [33] formed by the amidation of long chain saturated and unsaturated FA (UFA) [34]. They have higher antimicrobial activity against yeasts and bacteria than unmodified FA [35]. Amide derivatives of FA possess a broad bioactivity against different pathologic conditions (bacterial and parasitic infections, cancer, inflammation, etc.,) and their mechanisms of action imply protein synthesis inhibition and membrane leakage [36]. Also, microorganisms inside healthy plant tissues are unique to explore novel bioactive compounds. The FA and their amides from plant’s endogenous microorganisms have been scarcely reported despite being bioactive in a variety of processes and should be more explored as new therapeutic agents [36].
Lipids represent up to 7% of the dry weight of the leaves of higher plants and are important constituents of cell membranes, chloroplasts, and mitochondria [37]. Besides their structural function as main constituents of cell membranes, they have functional roles in plants (intracellular mediators, extracellular signalers, inter-species communication, and plant defense) and also serve as energy reserves (namely in seeds during germination) [21]. Palmitic acid (16:0) is the major saturated FA in leaf lipids. On the other hand, chloroplast membranes can have up to 90% α-18:3 FA in some lamellae [21]. FA exist in plants mainly linked to more complex molecules, as acylglycerols, esterified to a glycerol backbone in the form of triacylglycerols, sterol esters, MAG and diacylglycerols, phospholipids, or glycolipids. Several lipid classes, besides FA and MAG, have been identified in a diverse group of higher plants and tested for their antimicrobial activity, as will be detailed in the next sub-sections. Figure 1 illustrates the chemical structures of the different lipid classes with antimicrobial activity isolated from natural sources.
Figure 1. Chemical structures of the different lipid classes isolated from natural sources with antimicrobial activity.

2.1. Extraction and Isolation of Plant Lipids

Studies that extract or isolate lipids from plants to test their antimicrobial activity are scarce (Table 1). The biomass used to extract lipids includes leaves, fruits, seeds, stems, rhizomes, shoots, stem barks, and heartwoods (Table 1). Lipid extraction from plants is usually carried out with organic solvents of different polarities (mainly n-hexane, CHCl3, CH2Cl2, EtOAc, EtOH, BuOH, MeOH, and their mixtures) (Table 1). Liquid/liquid extractions or Soxhlet extraction are commonly performed to obtain total lipid extracts [38][39][40][41][42]. Instead of analyzing one lipid class or one lipid molecule, some studies have analyzed the total lipid extracts that were obtained by sequential extraction.
Table 1. Plant potential antimicrobial lipids or lipid-rich extracts, their origin and extraction method grouped by botanic family.
Botanical Name Family Common Name Country of Collection Plant Part Extracting Solvent/Method Isolated Lipids or Lipid Mixtures Ref.
Sesuvium portulacastrum L. Aizoaceae Sea purslane India Leaves MeOH/benzene/sulfuric acid (200:100:10, v/v) FAME [43]
Blutaparon portulacoides (A. St.-Hil.) Mears Amaranthaceae Capotiraguá Brazil Roots EtOH Acyl steryl glycosides (sitosteryl 3-β-O-glucoside 6’-O-palmitate and stigmasteryl 3-β-O-glucoside 6’-O-palmitate) [44]
Arthrocnemum indicum (Willd.) Moq., Salicornia brachiata Roxb., Suaeda maritima (L.) Dumort. and Suaeda monoica Forsk. Glasswort for Salicornia genus, herbaceous seepweed for S. maritima, and South-Indian seepweed for S. monoica India Shoots of A. indicum and S. brachiata, and leaves of S. maritima and S. monoica Dry MeOH/benzene/sulfuric acid (200:100:10, v/v) FAME [45]
Alternanthera brasiliana Brazilian joyweed Brazil Root, stem and leaves EtOH and EtOAc Linoleate oxylipins [46]
Phoenix dactylifera L. Arecaceae Date palm India Seeds CHCl3 and acetone Sterol and triterpenes [47]
Asphodelus aestivus Brot. Asphodelaceae (formerly Liliaceae) Summer asphodel Turkey Seeds Petroleum ether with Soxhlet extractor FA (C4:0, 6:0, 8:0, 10:0, 16:0, 18:0, 21:0, 24:0, 14:1, 15:1, 18:1n9t, 20:1, 24:1, 18:2, 18:2n6t, 18:2n6c, 20:2n6, 20:3n3, 22:6n3, and others unidentified) [38]
Artemisia incisa Pamp. Asteraceae   Pakistan Roots MeOH and recovered after elution on a SiO2 column with CH2Cl2/MeOH (9:1, v/v) following previous elution with n-hexane/EtOAc (5:4, v/v) Artemceramide-B [48]
Pteranthus dichotomus Forssk. (also known as P. echinatus Desf.) Caryophyllaceae   Algerian Sahara Aerial parts MeOH/H2O (80:20, v/v). Aqueous phase extracted successively with petroleum ether, EtOAc and n-BuOH. EtOAc fraction contained the sterols and steryl glycoside. BuOH fraction contained the glyceroglycolipids and the cerebroside. BuOH fraction contained the compounds: 1-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol, 1,2-di-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol and soya cerebroside I. EtOAc fraction contained the compounds: stigmat-7-en-3-ol, spinasterol, β-sitosterol and β-sitosterol-3-O-glycoside [49]
Cucumis sativus L. Cucurbitaceae Cucumber China Stems CHCl3 fraction of the crude methanolic extract Sphingolipids [(2S,3S,4R,10E)-2-[(2’R)-2-hydroxytetracosanoylamino]-1,3,4-octadecanetriol-10-ene, 1-O-β-D-glucopyranosyl-(2S,3S,4R,10E)-2-[(2’R)-2-hydroxytetracosanoylamino]-1,3,4-octadecanetriol-10-ene and soya-cerebroside I] [50]
Excoecaria agallocha Euphorbiaceae Blind-your-eye mangrove India Leaves Dry MeOH, benzene and sulfuric acid (200:100:10, v/v) FAME [51]
Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC) Fabaceae Flat crown Albizia and African teak, respectively Nigeria and Botswana, respectively Heartwood of A. adianthifolia and stem bark of P. angolensis n-hexane, CHCl3, MeOH, and 10% MeOH (aq) n-hexadecanoic acid (palmitic acid); oleic acid; chondrillasterol; stigmasterol, 24S 5α-stigmast-7-en-3-ol; 9,12-octadecadienoic acid (Z,Z)-, methyl ester; trans-13-octadecanoic acid, methyl ester; tetradecanoic acid; hexadecanoic acid, methyl ester; octadecanoic acid [52]
Baphia massaiensis Jasmine pea Botswana Seeds n-hexane/1-propanol (3:1, v/v) with Soxhlet extractor Seed oil (total FA) [53]
Cassia tora L. (or Senna tora L. Roxb.) Sickle Senna India Leaves and stem Petroleum ether with Soxhlet extractor FA (the major were palmitic acid, linoleic acid, linolenic acid, margaric acid, melissic acid, and behenic acid) [39]
Trigonella foenum-graecum L. Fenugreek India Seeds Supercritical fluid extraction (40–60 °C and 10–25 Mpa) Conjugated linoleic acid methyl ester, saturated FAME, steroids [54]
Quercus leucotrichophora A. Camus Fagaceae Banjh oak India Fruits 85% aqueous EtOH. Ethanolic extract fractionated with hexane and EtOAc using Soxhlet extractor. Hexane extract was analyzed. FAME [40]
Quercus leucotrichophora A. Camus Banjh oak Garhwal region of Himalaya Leaves and bark MeOH FA; linoleic acid in stem bark and leaves extracts and cis-vaccenic acid in stem bark [55]
Vitex altissima L., V. negundo L. and V. trifolia L. Lamiaceae Peacock chaste tree, Chinese chaste tree, and simpleleaf chastetree, respectively India Leaves Dry MeOH/benzene/sulfuric acid (200:100:10, v/v) FAME [56]
Linum usitatissimum L. Linaceae Common flax or linseed Algeria Seeds Petroleum ether with Soxhlet extractor FAME [41]
Scaphium macropodum (Miq.) Beumee ex. Heyne Malvaceae Malva nut or Kembang semangkok Malaysia Stem bark MeOH Methyl hexadecanoate, hexadecanoic acid <n-> [57]
Melastoma malabathricum L. Melastomataceae Planter’s rhododendron or Sendudok Malaysia Leaves MeOH/H2O (4:1, v/v), defatted with petroleum ether and extracted with CHCl3. Lipids recovered after elution of the CHCl3 extract by SiO2 column with CHCl3/acetone/MeOH (10:9:1, v/v). Steryl glycoside:
β-sitosterol 3-O-β-D-glucopyranoside
[58]
Azadirachta indica A. Juss Meliaceae Neem India Leaves MeOH. Recovered after elution on a SiO2 column with CHCl3/MeOH (9:1, v/v) SQDG [59]
Azadirachta indica A. Juss Neem India Leaves Petroleum ether (60–80 °C) for 24 h and extracted thrice with MeOH for 48 h each time at room temperature SQDG [60]
Carapa guianensis Aubl. and Carapa vasquezii Kenfack Andiroba Brazil Seed oil n-hexane with Soxhlet extractor FA, FAME, squalene, β-sitosterol [42]
Ficus lutea Vahl Moraceae Giant-leaved fig or Lagos rubbertree Cameroon Woods CH2Cl2/MeOH (1:1, v/v) and elution with EtOAc/10% MeOH Glycosphingolipid [1-O-β-D-glucopyranosyl-(2S,3R,5E,12E)-2N-[(2′R)-hydroxyhexadecanoyl]-octadecasphinga-5,12-dienine] named lutaoside [61]
Ficus pandurata Hance Fiddle leaf fig Egypt Fruits 70% MeOH. MeOH extract fractionated on a SiO2 column and purified by semi-preparative HPLC to afford pure ceramides Ceramides [panduramides A-D, and newbouldiamide] [62]
Kunzea ericoides (A. Rich) J. Thompson Myrtaceae Kanuka
(Maori), white manuka (Maori) or the white tea tree
(English)
Australia Leaves and twigs CH2Cl2:MeOH (1:1, v/v), CH2Cl2:MeOH (2:1, v/v) and CH2Cl2 (neat) Steryl esters, triacylglycerols, free FA, sterols, and phospholipids [63]
Pentagonia gigantifolia Ducke Rubiaceae   Peru Roots 95% EtOH. EtOH extract was fractionated on a SiO2 column using CHCl3/MeOH from 0% to 100% MeOH. Fraction eluted with 2% MeOH/CHCl3 was separated on C18 SiO2 using 85% to 90% MeOH. Acetylenic acids: 6-octadecynoic acid and 6-nonadecynoic acid [64]
Hedyotis pilulifera (Pit.) T.N. Ninh   Vietnam Aerial parts MeOH at 60 °C, suspended in water and successively partitioned with CHCl3 and EtOAc. EtOAc extract fractionated on a SiO2 column. Triterpenoids, steroids, FA, glycolipids, and a ceramide [65]
Withania somnifera (L.) Dunal, Euphorbia hirta L., Terminalia chebula Retz. Solanaceae, Euphorbiaceae, Combretaceae Ashwaganda, asthma-plant, black myrobalan India Fruits, leaf, stem, and root from W. somnifera and E. hirta and fruits, leaf, stem, and stem bark from T. chebula EtOAc Sterols fraction [66]
Kaempferia pandurata Roxb. (synonym of Boesenbergia rotunda (L.) Mansf.) and Senna alata (L.) Roxb. Zingiberaceae and Fabaceae, respectively Fingerroot and candle bush, respectively Indonesia Leaf of S. alata and rhizome of K. pandurata EtOH (96%) Sterols and triterpenoid [67]
Zygophyllum oxianum Boriss. Zygophyllaceae Beancaper Uzbekistan Leaves, stems, and fruit Acetone and CHCl3:MeOH (2:1, v/v) for total lipid extraction. Total lipids from each plant part separated in SiO2 columns. Neutral lipids eluted with CHCl3; glycolipids with acetone; phospholipids with MeOH. Total lipid extract from leaves, stems and aerial organs (hydrocarbons, triterpenol and steryl esters, triacylglycerols, free FA, sterols, phospholipids) [68]
In order to obtain a class of lipids or a particular lipid, the total lipid extract can be fractionated into different groups of lipids, depending on the polarity of the compounds, by thin-layer chromatography (TLC) or by column chromatography. Thus, for example, to recover the neutral lipids (e.g., sterol esters and triacylglycerols) by column chromatography, the extract can be eluted with CHCl3, followed by acetone to elute the glycolipids and, finally, with MeOH to elute the phospholipids, as mentioned for the leaves, stems and fruit of Zygophyllum oxianum [68]. The majority of the studies on antimicrobial plant lipids obtained and analyzed FA and their derivatives. FA have been isolated from a series of plant parts by using MeOH/benzene/sulfuric acid, 85% ethanol or supercritical fluid extraction (SFE) with CO2 and analyzed as FAME [40][43][45][51][54][56].
Mixtures of FA and FAME were obtained, but it was not clear if these FA were found in the free or esterified forms, since the derivatization methods (methylation) used in these studies convert free and esterified FA to FAME. However, because of their high abundance, presumably, the referred FA were esterified to other lipids. Several oxylipins were retrieved from roots, stems, and leaves of Brazilian joyweed (Alternanthera brasiliana) by extracting with EtOH and EtOAc [46]. Acetylenic FA were isolated from the roots of Pentagonia gigantifolia with 95% ethanol [64].
Other lipid classes isolated from plants for antimicrobial testing include sterols and sterol derivatives, glyceroglycolipids, and sphingolipids (Figure 1 and Table 1). The first group includes free sterols, steryl glycosides, and acyl steryl glycosides. Free sterols have been extracted together with triterpenes from the seeds of date palm (Phoenix dactylifera) by using CHCl3 and acetone [47], from several parts of Withania somniferaEuphorbia hirta, and Terminalia chebula with EtOAc [66] and leaves of candle bush (Senna alata) and rhizomes of fingerroot (Kaempferia pandurata) with EtOH [67]β-sitosterol 3-O-β-D-glucopyranoside, a steryl glycoside, was obtained from the leaves of Sendudok (Melastoma malabathricum) with CHCl3/acetone/MeOH [58] and the acyl steryl glycosides sitosteryl 3-β-O-glucoside 6’-O-palmitate and stigmasteryl 3-β-O-glucoside 6’-O-palmitate were obtained from the roots of capotiraguá (Blutaparon portulacoides) with EtOH [44]. Glyceroglycolipids, namely sulfoquinovosyldiacylglycerols (SQDG) were retrieved from neem (Azadirachta indica) leaves by extracting with MeOH and separating by SiO2 column chromatography with CHCl3/MeOH [59] or extracted with petroleum ether and re-extracted with MeOH [60].
In the group of sphingolipids, different chemical structures were identified belonging to different subclasses: ceramides and glycosphingolipids, also known as cerebrosides (Figure 1 and Table 1). Artemceramide-B was identified from the roots of Artemisia incisa after extraction with MeOH and recovered by SiO2 column chromatography after elution of the extract with CH2Cl2/MeOH following previous elution with n-hexane/EtOAc [48]. A cerebroside (soya-cerebroside I), a sphingolipid glycoside (1-O-β-D-glucopyranosyl(2S,3S,4R,10E)-2-[(2’R)-2-hydroxytetracosanoylamino]-1,3,4-octadecanetriol-10-ene), and its aglycone form (2S,3S,4R,10E)-2-[(2’R)-2-hydroxytetra-cosanoylamino]-1,3,4-octadecanetriol-10-ene) were isolated from the stems of cucumber (Cucumis sativus) by CHCl3 fractionation of the methanolic extract [50]. New glycosphingolipids were isolated and characterized from the fruits of fiddle leaf fig (Ficus pandurata), panduramides A–D and newbouldiamide [62], and from the woods of the giant-leaved fig (Ficus lutea), 1-O-β-D-glucopyranosyl-(2S,3R,5E,12E)-2N-[(2′R)-hydroxyhexadecanoyl]-octadecasphinga-5,12-dienine, commonly named lutaoside [61]. All these compounds are inhibitors of microbial growth, except panduramides A–D and newbouldiamide that did not reveal any activity (Table 2).
Table 2. Antimicrobial activity of plant lipids or plant lipid-rich extracts.
Botanical Name Tested (Micro)Organisms Antimicrobial Testing Method/Evaluation Reference Antimicrobial (Positive Control) MIC, MBC, Diameter of Inhibition Zone (in mm) or Other Isolated Lipids or Lipid Mixtures Ref.
Sesuvium portulacastrum L. G(+) bacteria: Bacillus subtilis NCIM 2063, B. pumilus NCIM 2327, Micrococcus luteus NCIM 2376 and S. aureus NCIM 2901; G(-) bacteria: P. aeruginosa NCIM 5031, K. pneumoniae NCIM 2957 and E. coli NCIM 2256. Ten isolates of MRSA and of MRSA NCTC 6571. Human pathogenic yeast type fungi: Candida albicansC. kruseiC. tropicalis and C. parapsilosis and mould fungi: Aspergillus nigerA. flavus, and A. fumigatus Inhibition zone (IZ) by disk diffusion test and minimum inhibitory concentration (MIC) by broth macrodilution method Ciprofloxacin for bacteria, methicillin, oxacillin and vancomycin for MRSA and amphotericin-B for fungi MIC: 0.25 mg/mL for B. subtilis, 0.5 mg/mL for S. aureus, MRSA, P. aeruginosaK. pneumoniae and C. albicans, and 1.0 mg/mL for E. coli; MBC: 0.5 mg/mL for B. subtilis, 1.0 mg/mL for S. aureus, MRSA and K. pneumoniae, and 2.0 mg/mL for P. aeruginosa and E. coli; MFC: 1 mg/mL for C. albicans FAME [43]
Blutaparon portulacoides (A. St.-Hil.) Mears Trypanosoma cruziLeishmania amazonensisS. aureus ATCC 25923 and 7+ penicillinase producer, Streptococcus epidermidis (6ep), E. coli ATCC 10538, Streptococcus mutans (9.1), Streptococcus sobrinus (180.3) Crude extracts and isolated compounds added to the trypomastigote-containing blood samples and incubated 24 h at 4 °C. Trypanocidal activity evaluated by counting the remaining trypomastigotes. L. amazonensis amastigote viability assessed colorimetrically by the reduction of a tetrazolium salt (MTT). Antimicrobial activity measured by the well-diffusionmethod in double layer Gentian violet for trypanocidal activity and gentamicin for antibacterial assays MIC: 100–500 μg/mL in T. cruzi trypomastigotes and 14–500 μg/mL in L. amazonensis amastigotes; 50 μg/mL in E. coliS. aureus ATCC 25923, S. aureus (7+) and 500 μg/mL in S. epidermidisS. mutans, and S. sobrinus Acyl steryl glycosides (sitosteryl 3-β-O-glucoside 6’-O-palmitate and stigmasteryl 3-β-O-glucoside 6’-O-palmitate) [44]
Arthrocnemum indicum (Willd.) Moq., Salicornia brachiata Roxb., Suaeda maritima (L.) Dumort. and Suaeda monoica Forsk. G(+) bacteria: B. subtilis NCIM 2063, B. pumilus NCIM 2327, M. luteus NCIM 2376, and S. aureus NCIM 2901; G(-) bacteria: P. aeruginosa NCIM 5031, K. pneumoniae NCIM 2957, and E. coli NCIM 2256; ten isolates of MRSA and of MRSA NCTC 6571; yeasts (C. albicans, C. krusei, C. tropicalis, and C. parapsilosis) and molds (A. nigerA. flavus, and A. fumigatus) Disk diffusion method and broth macrodilution method Ciprofloxacin for bacteria, methicillin, oxacillin and vancomycin for MRSA and amphotericin-B for fungi MIC of 0.06 mg/mL of S. brachiata extracts against B. subtilisS. aureus, and MRSA, and 0.5 mg/mL against P. aeruginosa; MIC of 0.5 mg/mL of all FAME extracts against E. coli and K. pneumoniae; MBC of 0.1 mg/mL of S. brachiata extracts against P. aeruginosa and of 1.0 mg/mL of all FAME extracts against E. coli and K. pneumoniae FAME [45]
Alternanthera brasiliana E. coli ATCC 25922, B. subtilis ATCC 6623, P. aeruginosa ATCC 15442, M. luteus ATCC 9341, and S. aureus ATCC 25923 Microdilution broth method according to NCCLS standardization Tetracycline and norfloxacin MIC: 50 μg/mL against B. subtilisM. luteus, and S. aureus Linoleate oxylipins [46]
Phoenix dactylifera L. Bacillus cereus and E. coli Disk diffusion method Streptomycin 20 mm against E. coli and 17 mm against B. cereus at 1 mg/mL of the acetone extract Sterol and triterpenes [47]
Asphodelus aestivus Brot. G(+) bacteria: S. aureus ATCC 6538-p, E. faecalis ATCC 29212; G(-) bacteria: E. coli ATCC 29998, K. pneumoniae ATCC 13883, P. aeruginosa ATCC 27853); yeasts: C. albicans ATCC 10239 and C. krusei ATCC 6258 Disk diffusion method and broth microdilution tests according to the recommendations of Clinical and Laboratory Standards Institute (CLSI) Ampicillin, ciprofloxacin and fluconazole MIC: 512 μg/mL against S. aureusE. faecalisK. pneumoniae, and C. albicans FA (4:0, 6:0, 8:0, 10:0, 16:0, 18:0, 21:0, 24:0, 14:1, 15:1, 18:1n9t, 20:1, 24:1, 18:2, 18:2n6t, 18:2n6c, 20:2n6, 20:3n3, 22:6n3, and others unidentified) [38]
Artemisia incisa Pamp. S. epidermidis and S. aureus Agar well diffusion method and MIC determined by a referenced method Streptomycin and tetracycline S. epidermidis (0.0157 mg/mL) and S. aureus (0.0313 mg/mL) Artemceramide-B [48]
Pteranthus dichotomus Forssk. (also known as P. echinatus Desf.) S. aureus ATCC 25923, E. coli ATCC 25922, K. pneumoniae ESBL, and Enterobacter sp. ESBL Disk diffusion method Gentamicin and ampicillin P. dichotomus BuOH extracts at 0.25 g/mL (8 mm against E. coliK. pneumoniae ESBL); P. dichotomus EtOAc extract at 0.5 g/mL (7 mm against E. coli), at 65 mg/mL (8.33 mm against S. aureus), and at 0.25 g/mL (7 mm against Enterobacter sp. ESBL) BuOH fraction contained 1-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol, 1,2-di-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol and soya cerebroside I. EtOAc fraction contained stigmat-7-en-3-ol, spinasterol, β-sitosterol and β-sitosterol-3-O-glucoside [49]
Cucumis sativus L. Phytopathogenic fungi (Pythium aphanidermatumBotryosphaeria dothideaFusarium oxysporum f.sp. cucumerinum, and Botrytis cinerea); phytopathogenic bacteria [G(-): Xanthomonas vesicatoria ATCC 11633, Pseudomonas lachrymans ATCC 11921, and G(+) B. subtilis ATCC 11562] Mycelial radial growth inhibition assay and antifungal activity (pour plating method in potato dextrose agar medium) for fungi and agar-well diffusion assay for bacteria Carbendazim for fungi and streptomycin sulfate for bacteria 5.5–100 inhibitory rate of mycelia growth inhibitory activity; IC50 of B. subtilis (50.2–110.9 μg/mL), X. vesicatoria (25.6–64.5 μg/mL), P. lachrymans (15.3–37.3 μg/mL) for sphingolipids Sphingolipids [(2S,3S,4R,10E)-2-[(2’R)-2-hydroxytetracosanoylamino]-1,3,4-octadecanetriol-10-ene, 1-O-β-D-glucopyranosyl-(2S,3S,4R,10E)-2-[(2’R)-2-hydroxytetracosanoylamino]-1,3,4-octadecanetriol-10-ene and soya-cerebroside I] [50]
Excoecaria agallocha G(+) bacteria: B. subtilis NCIM 2063, B. pumilus NCIM 2327, M. luteus NCIM 2376, S. aureus NCIM 2901; G(-) bacteria: P. aeruginosa NCIM 5031, K. pneumoniae NICM 2957, and E. coli NCIM 2256; yeasts: C. albicansC. kruseiC. tropicalis, and C. parapsilosis Disk diffusion method for antibacterial and antifungal susceptibility tests; MIC tested in Mueller-Hinton broth for bacteria and yeast nitrogen base for yeasts by two-fold serial dilution method Ciprofloxacin and amphotericin B MIC: 0.125 mg for B. subtilis and S. aureus, 0.5 mg for P. aeruginosa and K. pneumoniae, and 1.0 mg for E. coli; MBC: 0.25 mg for B. subtilis and S. aureus, 1.0 mg for P. aeruginosa and K. pneumoniae, and 2.0 mg for E. coli; MFC: 1 mg for C. albicansC. krusei and C. parapsilosis FAME [51]
Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC) Bacteria (E. coliP. aeruginosaB. subtilisS. aureus) and yeast (C. albicans) Modified agar overlay method Chloramphenicol for bacteria and miconazole for fungi MIQ: 1 μg of n-hexane and CHCl3 extracts of A. adianthifolia against E. coli; 50 μg of n-hexane and CHCl3 extracts of A. adianthifolia against P. aeruginosa; 50 μg of CHCl3 extract of P. angolensis against B. subtilis and 100 μg of n-hexane extract of P. angolensis against B. subtilis and C. albicans n-hexadecanoic acid (palmitic acid); oleic acid; chondrillasterol; stigmasterol, 24S 5α-stigmast-7-en-3-ol; 9,12-octadecadienoic acid (Z,Z)-, methyl ester; trans-13-octadecanoic acid, methyl ester; tetradecanoic acid; hexadecanoic acid, methyl ester; octadecanoic acid [52]
Baphia massaiensis E. coliB. subtilis, P. aeruginosaS. aureus, and C. albicans Agar well diffusion method Not mentioned 10 mm of inhibition zone against E. coli and S. aureus, and 16 mm against B. subtilis Seed oil (total FA) [53]
Cassia tora L. (or Senna tora L. Roxb.) MRSA, MSSA, B. subtilis, and P. aeruginosa Broth microdilution method Ampicillin MIC for all bacteria between 125–1000 μg/mL FA (the major were palmitic acid, linoleic acid, linolenic acid, margaric acid, melissic acid, and behenic acid) [39]
Trigonella foenum-graecum L. G(-) bacteria: E. coli and P. aeruginosa; G(+) bacteria: S. aureus and Streptococcus pyogenes; acid-fast bacteria: M. tuberculosis; fungi: C. albicansA. niger and A. clavatus; parasite Plasmodium falciparum (etiological agent of malaria) Antimicrobial activity assessed by broth dilution method, anti-tuberculosis activity assessed by the slope method, in vitro anti-malarial assay according to a microassay protocol Gentamycin, chloramphenicol, ciprofloxacin and norfloxacin for bacteria; isoniazid and rifampicin for mycobacteria; nystatin and greseofulvin for fungi; chloroquine and quinine as anti-malarials MIC values of 100, 250, 125 μg/mL towards E. coliS. aureus, and S. pyogenes and P. aeruginosa, respectively. MFC value of 250 μg/mL of C. albicans. MIC value of 100 μg/mL toward M. tuberculosis and of 0.29 μg/mL toward P. falciparum Conjugated linoleic acid methyl ester, saturated FAME, steroids [54]
Quercus leucotrichophora, A. Camus G(+) bacteria: B. subtilis and S. aureus; G(-) bacteria: P. aeruginosa and E. coli Disk diffusion method for antibacterial susceptibility tests; MIC was tested in Mueller-Hinton broth for bacteria by two-fold serial dilution method Ciprofloxacin MIC: 0.125 mg/mL for B. subtilis and S. aureus; 0.5 mg/mL for P. aeruginosa and 1.0 mg/mL for E. coli FAME [40]
Quercus leucotrichophora A. Camus G(-) bacteria: E. coli MTCC-582 and P. aeruginosa MTCC-2295; G(+) bacteria: S. aureus MTCC-3160, B. subtilis MTCC-441 and S. pyogenes MTCC-1924 Disk diffusion method Ampicillin IZ of both extracts against all microorganisms: 8.53 ± 0.50 to 19.07 ± 0.31 mm FA; linoleic acid in stem bark and leaves extracts and cis-vaccenic acid in stem bark [55]
Vitex altissima L., V. negundo L. and V. trifolia L. Culex quinquefasciatus (early fourth-instar larvae) Larvicidal activity analyzed according to standard procedures (WHO-VBC 81.807, 1981) Not mentioned V. trifolia (LC50 = 9.26 ppm and LC90 = 21.28 ppm) FAME [56]
Linum usitatissimum L. A. flavus MTTC 2799 and A. ochraceus CECT 2092 Determination of percent mycelial inhibition by growth radial technique on solid medium and by biomass technique on liquid medium Not mentioned Antifungal index of FAME in solid medium: 54.19 ± 0.85 at 10 μL in A. flavus and 40.48 ± 0.12 at 90 μL for A. ochraceus at 90 μL FAME [41]
Scaphium macropodum (Miq.) Beumee ex. Heyne Mycobacterium smegmatisE. coliS. typhimuriumB. subtilis, and S. aureus Inhibitory activity of the extract by disk diffusion method; broth microdilution assay (MTT assay) was used to determine the MIC; MBC was determined via streak plate method Ampicillin and rifampicin IZ of 10.67 ± 0.58 mm in S. aureus and of 9 mm in P. aeruginosa at 0.25 mg/mL. S. aureus showed the lowest MIC (0.78 mg/mL) and MBC (3.13 mg/mL). For M. smegmatis, MIC value was 3.13 mg/mL and MBC was 25 mg/mL Methyl hexadecanoate, hexadecanoic acid <n-> [57]
Melastoma malabathricum L. S. aureus ATCC 25923, B. cereus ATCC 10876, P. aeruginosa ATCC 17853, S. typhi laboratory strain Disk diffusion method Rifampicin P. aeruginosa (9 mm at 0.25 mg/mL), S. aureus (7 mm, 1 mg/mL), S. typhi (9 mm at 1 mg/mL), B. cereus (10.5 mm at 2 mg/mL) Steryl glycoside:
β-sitosterol 3-O-β-D-glucopyranoside
[58]
Azadirachta indica A. Juss Multidrug-resistant clinical isolates of S. aureusSalmonella enterica serovar typhiS. dysenteriaeE. coliVibrio choleraeK. pneumoniae, and P. aeruginosa MIC determined by microbroth dilution method and antibacterial sensitivity of SQDG determined by disk diffusion method (CLSI protocol) Not mentioned MIC of 32 μg/mL for S. typhi and two isolates of S. dysenteriae; MIC of 64 μg/mL for three isolates of S. typhiE. coli and V. cholerae and 256 μg/mL for K. pneumoniae SQDG [59]
Azadirachta indica A. Juss Raillietina spp. (helminth parasite) Ultrastructural changes by scanning electron microscopy Praziquantel Anthelmintic activity of SQDG with 0.5 and 1 mg/mL, respectively: paralysis time of 1 h and 0.7 h; death time of 1.6 h and 0.9 h SQDG [60]
Carapa guianensis and Carapa vasquezii Phytopathogenic fungi: A. flavusA. niger, and F. oxysporum Fungal mycelial growth inhibition trials developed in 96-well microtiter plates adding 10 μL of conidia suspensions (2 × 105 conidia mL−1) and 90 μL yeast peptone dextrose. Inhibition of germination observed under light microscopy 20 mM hydrogen peroxide MIC (μg/mL): 125–250 of C. guianensis and 15.6–125 of C. vasquezii against the three phytopathogenic fungi FA, FAME, squalene, β-sitosterol [42]
Ficus lutea Vahl Mucor miehei and B. subtilis Disk diffusion method Nystatin IZ of 17 mm for M. miehei; of 16 mm for B. subtilis; and of 12 mm for C. albicans exposed to 40 μg of compound Glycosphingolipid [1-O-β-D-glucopyranosyl-(2S,3R,5E,12E)-2N-[(2′R)-hydroxyhexadecanoyl]-octadecasphinga-5,12-dienine] named lutaoside [61]
Ficus pandurata Hance Yeast: C. albicans ATCC 90028, C. glabrata ATCC 90030, C. krusei ATCC 6258, A. fumigatus ATCC 90906, MRSA ATCC 33591, Cryptococcus neoformans ATCC 90113, S. aureus ATCC 2921, E. coli ATCC 35218, K. pneumoniae ATCC 13883, P. aeruginosa ATCC 27853, and Mycobacterium intracellulare ATCC 23068); chloroquine sensitive (D6, Sierra Leone) and resistant (W2, Indochina) strains of Plasmodium falciparum; parasite: Leishmania donovani promastigotes Modified versions of the NCCLS methods Antibacterial agent and antifungal agents not mentioned; antimalarial agents: chloroquine and artemisinin; anti-leishmanial agents: pentamidine and amphotericin B No activity was observed for any compound Ceramides [panduramides A-D, and newbouldiamide] [62]
Kunzea ericoides (A. Rich) J. Thompson E. coli ATCC 25922 and S. aureus ATCC 25923 Broth microdilution method utilizing the redox dye resazurin Not mentioned 0.625–10 mg/mL for S. aureus and more than 10 mg/mL in E. coli Steryl esters, triacylglycerols, free FA, sterols and phospholipids [63]
Pentagonia gigantifolia Ducke C. albicans ATCC 90028 and fluconazole-resistant C. albicans strains MIC and MFC determined by using a modified version of the microdilution NCCLS methods; sphingolipid reversal assay Amphotericin B, fluconazole and flucytosine C. albicans ATCC 90028 (0.52 to 1.04 μg/mL) Acetylenic acids: 6-octadecynoic acid and 6-nonadecynoic acid [64]
Hedyotis pilulifera (Pit.) T.N. Ninh S. aureus NBRC 100910, B. subtilis NBRC 13719, M. smegmatis NBRC 13167 Microdilution method Ampicillin Oleanolic acid (MIC value of 2.5 μg/mL against M. smegmatis), rotungenic acid (MIC value of 2.5, 2.5, and 1.25 μg/mL against S. aureusB. subtilis, and M. smegmatis, respectively), rotundic acid (MIC value of 5 μg/mL against B. subtilis) Triterpenoids, steroids, FA, glycolipids, and a ceramide [65]
Withania somnifera (L.) Dunal, Euphorbia hirta L., Terminalia chebula Retz. E. coli MTCC 46, P. aeruginosa MTCC 1934), Proteus mirabilis MTCC 3310, Raoultella planticola MTCC 2271, Enterobacter aerogenes (now Klebsiella aerogenes) MTCC 2822, B. subtilis MTCC 121, S. aureus MTCC 3160 Disk diffusion method for antibiotic susceptibility testing. Broth microdilution method for determination of MIC values Streptomycin MIC: W. somnifera leaf (0.039 mg/mL on P. aeruginosa); T. chebula fruits and stems (0.039 mg/mL on E. coli) and T. chebula stems and fruits (0.039 mg/mL on S. aureus): MBC of 0.039 mg/mL of T. chebula bark on S. aureus Sterols fraction [66]
Kaempferia pandurata Roxb. (synonym of Boesenbergia rotunda (L.) Mansf.) and Senna alata (L.) Roxb. MRSA, extended spectrum beta-lactamase (ESBL), and carbapenemase-resistant Enterobacteriaceae (CRE) Broth microdilution method Tetracycline and vancomycin for MRSA, cefotaxime and meropenem for ESBL-producing bacteria and for CRE MIC: K. pandurata extract (256 μg/mL) and S. alata extract (512 μg/mL) against MRSA Sterols and triterpenoid [67]
Zygophyllum oxianum Boriss. S. aureus ATCC 29213 and B. subtilis ATCC 6059 Modified disk diffusion method Ampicillin, gentamicin sulfate, and nystatin MIC: 2-mg leaves and stems extract (8 mm in S. aureus and 6 mm in B. subtilis, weak antibacterial activity); 2 mg-BuOH extract of whole air-dried aerial organs extract (5 mm in B. subtilis, 4 mm in E. coli and 20 mm in C. maltosa, good antifungal activity) Total lipid extract from leaves, stems and aerial organs (hydrocarbons,
triterpenol and steryl esters, triacylglycerols, free FA, sterols, phospholipids)
[68]
Abbreviations: CLSI, Clinical and Laboratory Standards Institute (formerly NCCLS); CRE, carbapenemase-resistant Enterobacteriaceae; ESBL, extended-spectrum beta-lactamase; FA, fatty acid; FAME, fatty acid methyl ester; G(-), Gram-negative; G(+), Gram-positive; IC50, half maximal inhibitory concentration; IZ: inhibition zone; LC50, concentration (ppm) at which 50% of larvae showed mortality; LC90, concentration (ppm) at which 90% of larvae showed mortality; MBC, minimum bactericidal concentration; MFC, minimum fungicidal concentration; MIC, minimum inhibitory concentration; MIQ, minimum inhibition quantity; MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-sensitive Staphylococcus aureus; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (tetrazolium dye); NCCLS, National Committee for Clinical Laboratory Standards; ppm, parts per million; SQDG, sulfoquinovosyldiacylglycerol.
The fractionation of the extracts has been usually carried out by column chromatography and the purification of the compounds can be achieved by semi-preparative HPLC.
Different analytical platforms have been used to identify and characterize the structure of lipids in plant extracts. Generally, in natural products research, several complementary methods are used, such as 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, gas chromatography (GC) coupled to a flame ionization detector (GC-FID) or to a mass spectrometer (GC-MS), as well as MS with electrospray ionization (ESI-MS). Liquid chromatography-MS (LC-MS) and LC-MS/MS has not been much used on antimicrobial plant lipids’ research, only for sphingolipids analysis [50] and for linoleate oxylipins’ structural characterization [46]. Besides these common techniques, two-dimensional NMR techniques (2-D NMR such as correlation spectroscopy-COSY, nuclear Overhauser effect spectroscopy-NOESY, heteronuclear single quantum coherence-HSQC, and heteronuclear multiple bond correlation-HMBC) have been used for the identification of artemceramide-D [48] and glyceroglycolipids [60]. Other methods are regularly used for the analysis of lipid extracts or their fractionation, such as TLC [41][58][50][63], column chromatography as mentioned above, or paper chromatography, but the information is very limited [58]. Analysis of FA is mostly performed by GC-FID or GC-MS, after derivatization. Total lipid extracts or lipid fractions are subjected to derivatization techniques using acid or alkaline hydrolysis or transmethylation to obtain FAME.
To identify and/or quantify mixtures of compounds, simpler techniques can be applied as biochemical assays using colorimetric tests, as for instance, for sterols’ and steryl glycosides’ identification and quantification [67][58][60]. The data obtained for compounds’ identification in these studies on antimicrobial plant lipids are normally compared with data reported in the literature, especially for spectroscopic data [60][65].

2.2. Susceptibility Testing, Inhibitory, and Microbicidal Activities of Plant Lipids

Several microbial strains were used in plant lipid studies, comprising Gram-positive bacteria, Gram-negative bacteria, acid-fast bacteria, yeasts, filamentous fungi, parasitic protozoa, and some MDR strains and/or hospital isolated strains, such as MRSA (Table 2).
The lowest MIC against S. aureus were observed for the mixture of lipid classes from the aerial parts of Hedyotis pilulifera (1.25 µg/mL) [65], the artemceramide-B from the roots of A. incisa (0.0313 mg/mL) [48], the linoleate oxylipins isolated from Alternanthera brasiliana (50 µg/mL) [46], and the FAME extracted from the shoots of Salicornia brachiata (60 µg/mL, the same MIC also verified for a MRSA strain) [45]. In the case of artemceramide-B, its high inhibitory potential against S. aureus was assigned to this polar lipid bearing four hydroxyl groups and an amide linkage between two long aliphatic chains [48]. In the case of the linoleate oxylipins from A. brasiliana plant tissues, five isolated oxylipins were also found to be synthesized by endophytic Bacillus strains isolated from this plant. So, it was speculated that the antimicrobial activity of the oxylipins from this plant could be derived from the endophytic bacteria, supposing an ecological crosstalk between this plant and its endogenous microbiome [46]. Also, the LC-MS/MS approach was crucial to identify these antimicrobial compounds both in the plants and in the bacteria, shedding some light on the plant–bacteria interplay [46].
The FA from the extract of Cassia tora’s leaves and stems exhibited MIC between 200 and 1000 μg/mL against MRSA [39]. The minimum bactericidal concentrations (MBC) against MRSA were determined on FAME from the leaves of Excoecaria agallocha (0.25 mg against S. aureus) [51], for MRSA the leaves of Sesuvium portulacastrum (1.0 mg/mL) [52], and the hexadecanoate methyl and hexadecanoic acid <n-> obtained from the stem bark of Scaphium macropodum (3.13 mg/mL against S. aureus) [57].
Other studies have tested the antimicrobial activity of lipids against other pathogenic microorganisms of great relevance for the clinical area and included in WHO’s guidelines, such as those of the “ESKAPE” group. The lipid extracts with greater inhibiting capacity over Escherichia coli were the FA and their derivatives from n-hexane and CHCl3 extracts of the heartwood of A. adianthifolia (1 µg) [52], and the acyl steryl glycosides obtained from roots of B. portulacoides (50 µg/mL) [44]. Also with low MIC values, the FAME extracted from the shoots of S. brachiata (0.5 mg/mL) [45] and the FAME and steroids from Trigonella foenum-graecum seeds (100 µg/mL) [54]. A MBC range between 1.0 and 2.0 mg/mL was verified for FAME extracts from the leaves of different plants [43][45][51].
Some lipid extracts were found to have low MIC against P. aeruginosa, as the FA and their derivatives obtained from the n-hexane and CHCl3 extracts of the heartwood of A. adianthifolia (50 µg) [52], FAME and steroids from fenugreek seeds (T. foenum-graecum, 100 µg/mL) [54], and the SQDG extracted from the neem leaves (A. indica, 128 µg/mL) [59]. MBC toward P. aeruginosa between 0.1 and 2.0 mg/mL were verified for the extracts of FAME from leaves of different plants [43][45][51], similarly to the findings for the E. coli strains.
For strains of Salmonella typhimurium, a high MIC value of 25 mg/mL was obtained from the stem bark extract of S. macropodum which contained four compounds including two FA (hexadecanoate methyl and hexadecanoic acid <n->) [57]. The SQDG extracted from the neem leaves showed antimicrobial activity against MDR strains of Salmonella typhi and Shigella dysenteriae, both with a MIC range between 32 and 64 µg/mL, and also against MDR strains of E. coli (64–128 µg/mL), P. aeruginosa (128 µg/mL), S. aureus (128–256 µg/mL), and K. pneumoniae (256 µg/mL) [59]. Also, identical MIC values (0.5 mg/mL) of FAME extracts [43][45][51] and FA [38] from different plants were observed against K. pneumoniae.
Studies with Mycobacterium sp. demonstrated antimicrobial activity of extracts of fenugreek seeds that contained a mixture of FAME and steroids, having a MIC of 100 µg/mL against M. tuberculosis [54]. Activity against Mycobacterium smegmatis was also verified by extracts containing hexadecanoate methyl and hexadecanoic acid <n-> FA from the stem bark of Malva nut, S. macropodum (3.13 mg/mL) and a MBC of 6.25 mg/mL [57]. Finally, the triterpenoids oleanolic acid and rotungenic acid were found to have activity against M. smegmatis with a MIC of 2.5 µg/mL and 1.25 µg/mL, respectively [65].
The fenugreek seed extracts from which conjugated linoleic acid methyl ester, saturated FAME, and steroids were identified, showed an inhibitory effect against Plasmodium falciparum with a MIC of 0.29 µg/mL [54].
The glycolipid SQDG isolated from neem has a broad-spectrum of activity against MDR bacterial strains [59] and anti-helminthic activity [60], which proves to be a promising natural antimicrobial agent. This class of compounds isolated from neem has demonstrated antiviral activity (herpes simplex viruses, HSV-1 and HSV-2) [59], significant DNA binding properties [69], and anti-leukemic activity [70]. However, it is difficult to isolate a single compound or a class of compounds from complex matrices as plants. In most studies, the antimicrobial effects may be due to a synergistic effect between several natural antimicrobial compounds, and not just to the referred lipids. As such, more studies must be done to understand which lipids can effectively be responsible by the inhibitory or microbicidal effect and the structure–activity relationship.

3. Antimicrobial Lipids from Marine Organisms

The most studied antimicrobial compounds of marine origin are peptides and alkaloids [71][72][73], contrarily to lipids. However, lipids are ubiquitously distributed in the different marine phyla, being quite abundant in some of them. Besides, several lipid classes from marine organisms have been recognized by their biological activity with a high potential to discover new antimicrobial compounds.

3.1. Marine Algae

Algal biomass is mainly composed by minerals, sugars, proteins, and lipids, that represent 1–15%, depending on the algal species and its habitat. Lipids found in the macroalgae from the three phyla, Rhodophyta, Chlorophyta, and Ochrophyta (Table 3), have demonstrated antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts, and fungi [74][75][76][77][78] (Table 4). Most of these antimicrobial lipids were isolated from Rhodophyta and Chlorophyta. While the former shows a high diversity of algal species as source of antimicrobial lipids, studies in Chlorophyta were focused on species belonging to the order Bryopsidales.
Table 3. Algae lipids and lipid-rich extracts with antimicrobial potential, their origin and extraction method.
Scientific Name Collection Site Extracting Solvent(s)/Method Isolated Lipids or Lipid Classes Methods for Compounds Identification Ref.
Macroalgae–Chlorophyta
Caulerpa racemosa Qionghai, Hainan, China EtOH (95%). Extract partitioned with EtOAc and n-BuOH SQDG [2S-1,2-di-O-palmitoyl-3-O-(6’sulfo-α-D-quinovopyranosyl) glycerol] 1H and 13C NMR, ESI-MS [79]
Caulerpa racemosa, Caulerpa lentillifera Port Dickson, Malaysia CHCl3, MeOH PUFA, MUFA, Terpenoids LC-MS [80]
Caulerpa racemosa, Ulva fasciata Buzios, Rio de Janeiro, Brazil Acetone insoluble material extracted with CHCl3/MeOH (2:1 and 1:2, v/v). Lipid extract partitioned on SiO2 column, eluted with CHCl3, acetone or MeOH Glycolipid-rich extracts (Sulfoglycolipids, Glycosyldiacylglycerols) HPTLC [81]
Caulerpa spp., Chlorodesmis fastigiata, Halimeda spp., Penicillus capitatus, Penicillus dumentosus, Penicillus pyriformis, Rhipocephalus phoenix, Udotea argentea, Udotea cyathiformis, Udotea flabellum, Udotea petiolata Bahamas, Florida Keys, Puerto Rico, Belize, Guan, Hawaii, Australia, Mediterranean Sea CH2Cl2. Chlorophylls removed with MgO3Si. Fractionation with SiO2 column and purification by HPLC Sequiterpenoids, Diterpenoids TLC, NMR, HPLC [82]
Chaetomorpha linum IMTA, Mar Piccolo of Taranto, Italy CHCl3/MeOH (2:1, v/v), Soxhlet extractor, EtOH (95%) Lipid extracts 1H and 13C NMR, 1D and 2D NMR, GC-FID, TLC [83]
Codium amplivesiculatum Bahía Magdalena, Mexico CH2Cl2/EtOH (97:3, v/v). Liquid/liquid extraction CH2Cl2/H2O. Fractionation with CH2Cl2. Crystallization in hot MeOH Fraction with clerosterol as main constituent. Isolated clerosterol did not show activity 1H NMR, IR [84]
Ulva fasciata Malvan, India EtOH, fractionated by neutral alumina column with EtOAc/MeOH Sphingosine (major component: N-palmitoyl-2-amino-1,3,4,5-tetrahydroxyoctadecane) 1H and 13C NMR, FAB-MS, IR [85]
Malvan, India EtOH (90%). Extract fractionated. n-hexane fraction chromatographed on SiO2 and flash SiO2 Ceramide (Erythro-sphinga-4,8-dienine-N-palmitate) 1H and 13C NMR, ESI-MS, GC-MS, IR [86]
Mediterranean Sea, Egypt CHCl3/MeOH (2:1, v/v). Glycolipid separation using acetone on SiO2 column Glycolipid-rich extracts (DGDG) GC-FID, LC-MS/MS [87]
Mediterranean Sea, Egypt MeOH/CHCl3 (2:1, v/v). Sulfolipid isolation: diethylaminoethyl-cellulose column eluted with CHCl3/MeOH (6:4, v/v) and NH3 Sulfolipids (SQDG) GC-MS, GC-FID, LC-MS/MS, IR [75]
Ulva rigida Cap Zebib and Ghar El Melh, Tunisia CH2Cl2 and CH2Cl2/MeOH (1:1, v/v). Extracts fractionated on SiO2 column and TLC with n-hexane/EtOAc/CH2Cl2/MeOH FA 1H and 13C NMR, GC [27]
Macroalgae–Rhodophyta
Chondria armata Goa, West coast of India; Mumbai, India MeOH and CHCl3, Polar fractions: petroleum ether/EtOAc (1:1, v/v), MeOH/CHCl3 (2:98, v/v), MeOH/CHCl3 (5:95, v/v) Neutral glycolipids [main compound MGDG(20:5/16:0)] 1H and 13C NMR, ESI-MS/MS [88]
Chondrus crispus, Gracilaria vermiculophylla, Porphyra dioica IMTA and Portuguese coast, Portugal EtOAc in Soxhlet extractor FA GC-FID [89]
Falkenbergia
(heteromorphic sporophyte of Asparagopsis taxiformis)
Kollam coast, India MeOH. Fractionation on SiO2 column (petroleum ether/EtOAc and EtOAc/MeOH). Purification with TLC and RP HPLC FA GC-MS [90]
Galaxaura cylindrica, Laurencia papillosa Red Sea, Egypt CHCl3/MeOH (2:1, v/v). Glycolipid separation using acetone on SiO2 columns Glycolipid-rich extracts
(DGDG)
LC-MS/MS [87]
Red Sea, Egypt MeOH/CHCl3 (2:1, v/v). Sulfolipid isolation: diethylaminoethyl-cellulose column (CHCl3/MeOH (6:4, v/v) and NH3) Sulfolipids (SQDG) GC-MS, GC-FID, LC-MS/MS, IR [75]
Gigartina tenella Sagami Bay, Kanagawa, Japan Acetone. Extract partitioned with EtOAc/H2O (3:1, v/v). Organic layer dissolved in EtOAc/MeOH/H2O (100:20:5, v/v) and chromatographed on SiO2 column Glycolipid (Sulfolipids) 1H and 13C NMR, HR-FAB-MS [91]
Gracilaria gracilis Ganzirri lagoon and Margi channel, Eastern Sicily, Italy CHCl3, Et2O in Soxhlet extractor FA GC-FID [92]
Gracilariopsis longissima Mar Piccolo of Taranto, Italy CHCl3/MeOH/H2O (2:1:1, v/v) FA 1H and 13C NMR, 1D and 2D NMR, GC-FID [93]
Hypnea musciformis, Osmundaria obtusiloba, Porphyra acanthophora, Pterocladiella capillacea Buzios, Rio de Janeiro, Brazil Acetone insoluble material extracted with CHCl3/MeOH (2:1 and 1:2, v/v). Extract partitioned on SiO2 column (CHCl3, acetone or MeOH) Glycolipid-rich extracts (Sulfolipids, Glycosyldiacylglycerols) HPTLC [81]
Jania corniculata, Laurencia papillosa Suez Canal, Egypt EtOH (70%), CH2Cl2 FA GC-MS [94]
Laurencia okamurai Nanji Island in the East China Sea, Zhejiang Province, China EtOH (95%) extract partitioned with Et2O and fractionated by SiO2 (gradient system: petroleum ether –CH2Cl2 (10:0 → 1:9)), Sephadex column, and purification by semi-preparative C18 HPLC FA ethyl esters [(9Z,12Z,15Z,18Z,21Z)-ethyl tetracosa-9,12,15,18,21-Pentaenoate, (10Z,13Z)-ethyl nonadeca-10,13-dienoate, (9Z,12Z)-ethyl nonadeca-9,12-dienoate, (Z)-ethyl octadec-13-enoate (4), and (Z)-ethyl hexadec-11-enoate] 1H and 13C NMR, 1D and 2D NMR, IR, HR-EI-MS [95]
Laurencia spp. Pulau Tioman, Pahang, Pulau Karah, Terengganu, Pulau Nyireh, Terengganu, Malaysia MeOH. Extract partitioned with Et2O and H2O and fractionated by SiO2 column (hexane/EtOAc) Sesquiterpenes (Halogenated sesquiterpenes) 1H and 13C NMR, LREIMS, HREIMS [96]
Osmundaria obtusiloba Buzios, Rio de Janeiro, Brazil Acetone insoluble material extracted with CHCl3/MeOH (2:1 and 1:2, v/v). Extract partitioned (CHCl3/MeOH/0.75% KCl (8:4:3, v/v)). Fractionation on SiO2 column (CHCl3, acetone and MeOH). MeOH fraction purified on SiO2 column (CHCl3/MeOH, 90:10, v/v) Glycolipids (Sulfoglycolipids) 1H and 13C NMR, ESI-MS/MS [97]
Palmaria palmata, Grateloupia turuturu Batz-sur-Mer, France CH2Cl2/MeOH (2:1, v/v), MeOH/H2O (1:1, v/v) Polar lipids 1H and 13C NMR [98]
Pyropia orbicularis Maitencillo, Chile MeOH, acetone, CH2Cl2n-hexane. Soxhlet extractor. n-hexane extract fractionated on SiO2 column (2, 10, 20, 30 and 100% acetone) Phospholipids (main compounds PC-O, PE, PS, PI, SM, GlCer), Glycolipids (MGDG), Triacylglycerol, DAG LC-ESI-MS/MS [99]
Sphaerococcus coronopifolius Atlantic coast of Morocco MeOH/CH2Cl2. Extract separated on SiO2 column (hexane, gradients of hexane/CH2Cl2 and CH2Cl2/acetone, and MeOH) Bromoditerpenes (Sphaerolabdadiene-3,14-diol (1), Sphaerococcenol) 1H and 13C NMR, HRMS, EIMS, CIMS, FTIR, UV [100]
Macroalgae–Ochrophyta
Dictyota cervicornis, Dictyota menstrualis Buzios, Rio de Janeiro, Brazil Acetone insoluble material extracted with CHCl3/MeOH (2:1 and 1:2, v/v). Extract partitioned on SiO2 column (CHCl3, acetone or MeOH) Glycolipid-rich extracts (Sulfoglycolipids, Glycosyldiacylglycerols) HPTLC [81]
Dictyota fasciola, Taonia atomaria Mediterranean Sea, Egypt CHCl3/MeOH (2:1, v/v). Glycolipid separation using acetone on SiO2 column Glycolipid-rich extracts (DGDG) GC-FID, LC-MS/MS [87]
Mediterranean Sea, Egypt MeOH/CHCl3 (2:1, v/v). Sulfolipid isolation: diethylaminoethyl-cellulose column (CHCl3/MeOH (6:4, v/v) and NH3) Glycolipids (Sulfolipids) GC-MS, GC-FID, LC-MS/MS, IR [75]
Fucus evanescens West coast of Ungava Bay, Canada EtOAc (99%), CH2Cl2. EtOAc algal extract acetylated and organic layer purified by flash chromatography (0% → 50% EtOAc in hexane and flushed with 100% EtOAc and 5% MeOH in 95% EtOAc) Glycolipid-rich extracts 1H and 13C NMR [101]
Himanthalia elongata Las Palmas, Spain Pressurized liquid extraction Hexane, EtOH, H2O Sterol (Fucosterol), FA GC-MS, HPLC-DAD [102]
Laminaria cichorioides Khasan region of the Primorskii Territory, in the Troitsa Gulf (the Sea of Japan), Russia EtOH (96%). Lipophilic fraction extracted with CHCl3. Fractionation of lipid classes on SiO2 column Glycolipids (MGDG, DGDG, SQDG), Free FA, PUFA   [77]
Sargassum dentifolium Suez Canal, Egypt EtOH (70%), CH2Cl2 FA GC-MS [94]
Sargassum fusiforme, Sargassum vulgare Red Sea, Egypt Et2O, MeOH, EtOH, CHCl3 Terpenoids, FA GC-MS [103]
Sargassum pallidum Trinity Bay in the Peter the Great Gulf, Russia EtOH; EtOH/acetone (1:1, v/v), EtOH/CHCl3 (1:1, v/v). Fractionation of lipid classes on SiO2 column (hexane, Et2O/hexane with increasing ether concentration (95:5 → 50:50, v/v) and CHCl3) Glycolipids (MGDG, SQDG; DGDG), Free FA/Esters, Triacylglycerols, DAG   [104]
Sargassum vulgare Sepetiba Bay, Brazil CHCl3/MeOH (2:1 and 1:2, v/v). Fractionated on SiO2 column (CHCl3, acetone and MeOH) Glycolipid-rich extracts (Sulfoglycolipids) 1H and 13C NMR, ESI-MS-MS [105]
Sargassum wightii Gulf of Mannar, India MeOH. Isolation on SiO2 column (hexane/EtOAc, EtOAc/MeOH). Purification on flash SiO2 column (CHCl3/MeOH gradients) Glycolipid (Sulfoglycerolipid, 1-O-palmitoyl-3-O(6′-sulfo-α-quinovopyranosyl)-glycerol) 1H and 13C NMR, IR [106]
Microalgae
Chaetoceros muelleri   Supercritical fluid extraction, EtOH (99.5%) Triacylglycerol, DAG, MAG, sterols (cholesterol), FA HPLC-ELSD, GC-FID [107]
Chlorococcum HS-101 Japan MeOH extract, partitioned with hexane. SiO2 column (MeOH/CHCl3 gradient). Active fraction recovered with MeOH/CHCl3 (5:95, v/v) FA 1H and 13C NMR, GC-MS [108]
Dunaliella salina Jerusalem, Israel Pressurized liquid extracts: hexane, petroleum ether, EtOH FA
Sesquiterpenoids (Neophytadiene), Diterpenoid (Phytol)
GC-MS [109]
Navicula delognei Lepreau Ledges, New Brunswick, Canada MeOH, CHCl3, extract chromatographed on SiO2 column (CHCl3 and CHCl3/MeOH) FA [(6Z,9Z,12Z,15Z)-hexadecatetraenoic acid, (6Z,9Z,12Z,15Z)-octadecatetraenoic acid), Ester ((E)-phytol (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate] 1H and 13C NMR, GC-MS [110]
Phaeodactylum tricornutum Experimental Phycology and Culture Collection of Algae at the University of Göttingen (Germany) EtOAc and MeOH extracts applied to SiO2 Sep Pak cartridges. EtOAc extract eluted with 10% step increases of hexane/EtOAc until 100% EtOAc. MeOH extract eluted with 10% step increases of EtOAc/MeOH until 100% MeOH Free FA (palmitoleic acid, HTA) 1H and 13C NMR, ESI-MS [111]
  MeOH/H2O (5:1, v/v). Extract redissolved in MeOH (70%) and fractioned on Sep Pak cartridge (MeOH (70%) followed by constant volumes of MeOH (5% steps → 100%)). Fractionated by RP HPLC FA (EPA) 1H NMR, ESI-MS [112]
Synechocystis sp. Las Palmas, Spain Pressurized liquid extraction: hexane, EtOH, H2O FA, Sesquiterpenoids (Neophytadiene) GC-MS, HPLC-DAD [102]
Table 4. Antimicrobial activity of algae lipids or algae lipid-rich extracts.
Scientific Name Antimicrobial Activity Tested Microorganisms Antimicrobial Testing Method/Evaluation Reference Antimicrobial (Positive Control) MIC, MBC, Diameter of Inhibition Zone (IZ, in mm) or Other Ref.
Macroalgae–Chlorophyta
Caulerpa racemosa Antiviral Viruses: Cox B3, HSV Cytopathic effect (CPE) reduction assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method Acyclovir (HSV), Ribavirin (Cox B3) IC50/CC50 (µg/mL)/SI
Cox B3: 31.3/500/16
HSV: 7.9/250
[79]
Caulerpa racemosa, Caulerpa lentillifera Antibacterial G(+):MRSA (MTCC 381123)
G(-): E. coli K1 (MTCC 710859)
Disk diffusion method, crude extracts (CHCl3 and MeOH) Penicillin-streptomycin PI: 97.7% (C. racemosa) [80]
Caulerpa racemosa, Ulva fasciata Antiviral Viruses: HSV-1-ACVs, HSV-1-ACVr Titer reduction     [81]
Caulerpa spp., Chlorodesmis fastigiata, Halimeda spp., Penicillus capitatus, Penicillus dumentosus, Penicillus pyriformis, Rhipocephalus phoenix, Udotea argentea, Udotea cyathiformis, Udotea flabellum, Udotea petiolata Antibacterial, Antifungal G(-):Serratia marinoruba, Vibrio splendida, V. harveyi, V. leiognathi, Vibrio sp.
Undescribed bacteria: VJP Cal8101, VJP Cal8102, VJP Cal8103
Fungi: Leptosphaeria sp. Lulworthia sp., Alternaria sp., Dreschleria haloides, Lindra thallasiae,
Undescribed fungi: VJP Cal8104, VJP Cal8105
Plate assay-disk method   IZ (mm) > 2 [82]
Chaetomorpha linum Antibacterial G(+): Pseudomonas sp., Staphylococcus sp., Streptococcus agalactiaeEnterococcus sp.
G(-): Vibrio alginolyticus, V. harveyi, V. mediterranei, V. ordalii, V. parahaemolyticus, V. salmonicida, V. vulnificus
Yeast: C. albicans,
Candida famata, C. glabrata
Disk diffusion method   IZ (mm)
V. ordalii: 8–12
V. vulnificus: 8–12
[83]
Codium amplivesiculatum Antibacterial G(+): S. aureus (ATCC BAA-42, resistant to methicillin, penicillin, ampicillin/sulbactam, oxacillin, cefalotine)
G(-): V. parahaemolyticus (17802)
Disk diffusion method   MIC (µg/mL)/IZ (mm)
S. aureus: 125/15
V. parahaemolyticus: >250/8
[84]
Ulva fasciata Antiviral Virus: Semeliki Forest Virus (SFV)     20 mg/mouse/7 days by giving 50% protection [85]
Antiviral Viruses: Japanese encephalitis
virus (JEV), encephalomyocarditis (EMC) virus
96-well microtiter plates   CC50 (µg/mL)/EC50 (µg/mL)/TI
JEV: 7.8/3.9/2.0
[86]
Antifungal, Antiviral Yeast: C. albicans;
Fungus: A. niger
Virus: HSV-1
Disk diffusion method; plaque reduction assay (antiviral)   MIC (µg/mL)/IZ (mm)
C. albicans: 60/8,
A. niger: 80/13
HSV-1: 9.37–15.62%
[87]
Antibacterial, Antiviral G(+):B. subtilis RRL B-94
G(-): E. coli NRRL B-3703
Virus: HSV-1
Disk diffusion method Chloramphenicol (bacteria), Acyclovir (virus) MIC (µg/mL)/IZ (mm)
PI(%)
E. coli: 60/13
B. subtilis: 40/16
HSV-1: 18.75–46.87%
[75]
Ulva rigida Antibacterial G(+): S. agalactiae, S. aureus (ATCC 25923), S. aureus (ATCC 6538), E. faecalis (ATCC 29212), Micrococcus sp.
G(-): Vibrio tapetis (CECT4600), V. anguillarum (ATCC 12964T), V. alginolyticus (ATCC 17749T), E. coli O126-B16 (ATTC 14948), E. coli (ATCC 25922), E. coli (ATCC 8739), Pseudomonas cepacia, P. fluorescens (AH2), P. aeruginosa (ATCC 27853), Aeromonas salmonicida (LMG3780), A. hydrophila B3, S. typhimurium (C52)
Yeast: C. albicans (ATCC10231)
Disk diffusion method and broth microdilution technique   IZ (mm)
6.3–16.3
[27]
Macroalgae–Rhodophyta
Chondria armata Antibacterial, Antifungal G(+): S. aureus
G(-): E. coli, P. aeruginosa, S. typhi, Salmonella flexneri, Klebsiella sp., V. cholerae
Yeast: C. albicans, C. neoformans, Rhodotorula sp.
Fungi: Aspergillus fumigatus, A. niger
Disk diffusion method Streptomycin,
Nystatin
1 < IZ ≤ 4 [88]
Chondrus crispus, Gracilaria vermiculophylla, Porphyra dioica Antibacterial, Antifungal G(+): Listeria innocua (NCTC 11286), B. cereus (ATCC 11778), E. faecalis (LMG S 19456 5002), Lactobacillus brevis (LMG 6906), S. aureus (ATCC 6538), MRSA
G(-): E. coli (ATCC 8739), Salmonella enteritidis (ATCC 3076), P. aeruginosa (ATTC 10145)
Yeast: Candida spp. (CCUG 49242)
Disk diffusion method Ampicillin (L. innocua), Cycloheximide (Candida spp.), Chloramphenicol (other microorganisms) IZ (mm)
C. crispus: 5 < IZ ≤ 20
G. vermiculophylla: 10 < IZ ≤ 15
P. dioica: 5 < IZ ≤ 12
[89]
Falkenbergia
(heteromorphic sporophyte of Asparagopsis taxiformis)
Antibacterial G(+): S. epidermidis, S. aureus, B. subtilis
G(-): V. vulnificus (MTCC 1145), V. parahaemolyticus (MTCC 451), V. harveyi (MTCC 3438), V. alginolyticus (MTCC 4439), V. alcaligenes (MTCC 4442), P. aeruginosa, K. pneumoniae
Broth dilution method Chloramphenicol, Nalidixic acid IZ (mm)/MIC (µg)/MBC (µg)
S. epidermidis: 21/1250/270
S. aureus: 21/750/170
B. subtilis: 23/750/180
V. vulnificus: 31/750/90
V. parahaemolyticus: 28/750/110
V. harveyi: 26/750/60
V. alginolyticus: 32/500/80
V. alcaligenes: 33/500/50
P. aeruginosa: 19/1250/420
K. pneumoniae: 15/1250/380
[90]
Galaxaura cylindrica, Laurencia papillosa Antiviral Virus: HSV-1 Plaque reduction assay Acyclovir Inhibition (%)
L. papillosa: 9.37–31.25
G. cylindrica: 15.62–28.12
[87]
Antibacterial, Antiviral G(+): B. subtilis NRRL B-94
G(-): E. coli NRRL B-3703
Virus: (HSV-1)
Disk diffusion method Chloramphenicol (bacteria), Acyclovir (virus) MIC (µg/mL)/IZ (mm)
PI(%)
L. papillosa
E. coli: -/8
B. subtilis: -/11
HSV-1: 40.62–59.37%
G. cylindrica
E. coli: 80/11
B. subtilis: 80/11
HSV-1: 45.87–59.37%
[75]
Gigartina tenella Antiviral HIV-reverse transcriptase type 1     IC50 11.2 µM [91]
Gracilaria gracilis Antibacterial G(+): B. subtilis
G(-): V. fischeri, V. cholerae, P. aeruginosaSalmonella sp., A. hydrophila
Disk diffusion method Chloramphenicol MIC: 5 µg/disk
IZ (mm)
B. subtilis 10.3–17.6 (CHCl3)/10–15.6 (Et2O)
[92]
Gracilariopsis longissima Antibacterial, Antifungal G(+): S. agalactiae, Enterococcus sp.
G(-): P. aeruginosaV. salmonicidaV. fluvialis, V. vulnificus, V. cholerae non-O1, V. alginolyticus
Yeast: C. albicans, C. famataC. glabrata
Disk diffusion method   IZ (mm)
V. alginolyticus: 25
V. fluvialis: 8
V. vulnificus: 15
V. cholerae non-O-1:10
[93]
Hypnea musciformis, Osmundaria obtusiloba, Porphyra acanthophora, Pterocladiella capillacea Antiviral Virus: HSV-1-ACVs, HSV-1-ACVr Titer reduction   PI(%)/VII
O. obtusiloba
ACVs-HSV-1: 82.2–99.5/0.75–2.35
HSV-1-ACVr: 99.7–99.9/2.5–4.5
[81]
Jania corniculata, Laurencia papillosa Antibacterial, Antifungal G(+): B. subtilis, Staphylococcus albus, E. faecalis
G(-): E. coli
Yeast: C. albicans
Fungus: A. flavus
Disk diffusion method   11 < IZ ≤ 15
No IZ (A. flavus)
[94]
Laurencia okamurai Antifungal Yeast: C.
neoformans (32609), C. glabrata (537)
Fungi: Trichophyton rubrum (Cmccftla), A. fumigatus (07544)
Broth dilution method Amphotericin B, fluconazole, voriconazole, ketoconazole MIC80 (µg/mL)
C. neoformans: 8–64
C. glabrata: 4–64
A. fumigatus: >64
T. rubrum: 64
[95]
Laurencia spp. Antibacterial G(-): Chromobacterium violaceum, P. mirabilis,
P. vulgaris, Erwinia sp.,
V. parahaemolyticus, V. alginolyticus
Disk diffusion method   MIC (µg/disk)
C. violaceum: 10–40
P. mirabilis: 20–40
P. vulgaris: 20–40
Erwinia sp.: 10–30
V. parahaemolyticus: 20–40
V. alginolyticus: 20–30
[96]
Osmundaria obtusiloba Antiviral Virus: HSV-1, HSV-2 Titer reduction Acyclovir EC50 (µg/mL)/SI/PI(%)
HSV-1: 42/1.7/75
HSV-2: 12/6/96
[97]
Palmaria palmata, Grateloupia turuturu Antibacterial G(-): V. harveyi ORM4 Broth microdilution method   0.2 < PI ≤ 7.9% [98]
Pyropia orbicularis Antibacterial G( + ): S. aureus, B. cereus
G(-): E. coli
Disk diffusion method Kanamycin 16 < IZ < 26 [99]
Sphaerococcus coronopifolius Antibacterial, Antiplasmodial G(+): S. aureus (ATCC # 6538)
Parasitic protozoa: P. falsciparum (FCB1)
Antibacterial: Disk-diffusion, Antimalarial: inhibition of [3H]-hypoxanthine uptake by P. falsciparum cultured in human blood   S. aureus-MIC: 0.104–0–146 µM
P. falciparum-IC50: 1 µM
[100]
Macroalgae–Ochrophyta
Dictyota cervicornis, Dictyota menstrualis Antiviral Virus: HSV-1-ACVs, HSV-1-ACVr Titer reduction     [81]
Dictyota fasciola, Taonia atomaria Antibacterial, Antifungal, Antiviral G(+): B. subtilis
G(-): E. coli
Fungi: C. albicans, A. niger
Virus: HSV-1
Disk diffusion method (antibacterial); Plaque reduction assay (antiviral)   D. fasciola:
Inhibition (%)
HSV-1: 50.00–81.25%
T. atomaria: MIC (µm/mL)/IZ(mm)
B. subtilis: 80/9, E. coli: 80/7, C. albicans: 80/10,
A. niger: 60/12
Inhibition (%)
HSV-1: 31.25–34.37%
[87]
Antibacterial, Antiviral G(+):B. subtilis NRRL B-94
G(-): E. coli NRRL B-3703
Virus: HSV-1
Disk diffusion method (antibacterial); Plaque reduction assay (antiviral) Chloramphenicol (bacteria), Acyclovir (virus) MIC (µg/mL)/IZ (mm)
PI(%)
D. fasciola
E. coli: -/8
B. subtilis: -/10
HSV-1: 46.87–70.12%
T. atomaria:
E. coli: 60/15
B. subtilis: 40/13
HSV-1: 43.75–56.25%
[75]
Fucus evanescens Antibacterial G(+): B. cereus, Clostridium difficile, MRSA, Propionibacterium acnes (ATCC and clinical isolate), S. pyogenes
G(-): Acinetobacter baumannii, E. coli, Haemophilus influenzae, K. pneumoniae, Legionella pneumophila, P. aeruginosa
Disk diffusion method   MIC100: 50 µg/mL [101]
Himanthalia elongata Antibacterial G(+): S. aureus ATCC 25923,
G(-): E. coli ATCC 11775
Yeast: C. albicans ATCC 60193
Fungi: A. niger ATCC 16404
Broth microdilution method   MBC (mg/mL)
S. aureus: 6.25
E. coli: 6.00
MFC (mg/mL)
C. albicans: 8
A. niger: 12
[102]
Laminaria cichorioides Antibacterial, Antifungal G(+): S. aureus ATCC 21027
G(-): E. coli ATCC 15034
Yeast: Safale S04, C. albicans KMM 455
Fungi: A. niger KMM 4634, F. oxysporum KMM 4639
Disk diffusion method Fucoxanthin, Nitrofungin IZ (mm)
S. aureus: 2–5
E. coli:1–6
C. albicans: 1–6
A. niger: 1–3
F. oxysporum: 1–4
[77]
Sargassum dentifolium Antibacterial, Antifungal G(+): B. subtilis, S. albus, E. faecalis
G(-): E. coli
Yeast: C. albicans
Fungus: A. flavus
Disk diffusion method   11 < IZ (mm) ≤ 12
No IZ (A. flavus)
[94]
Sargassum fusiforme, Sargassum vulgare Antibacterial Multidrug resistant:
S. aureus,
P. aeruginosa,
Shigella flexneri,
E. coli,
Corynebacterium sp.
Agar well diffusion   9.33 < IZ (mm) ≤ 23.33
MIC: 50–100 mg/mL
[103]
Sargassum pallidum Antibacterial, Antifungal G(+): S. aureus ATCC 21027
G(-): E. coli ATCC 15034
Yeast: C. albicans KMM 455
Fungi: A. niger KMM 4634, F. oxysporum KMM 4639, Septoria glycines
Agar well diffusion   IZ (mm)
S. aureus: 0.7–14.5
E. coli: 0.5–6.7
C. albicans: 1.0–4.5
A. niger: 2.0–5.7
F. oxysporum: 1.0–5.2
S. glycines: 2.0–5.7
[104]
Sargassum vulgare Antiviral Virus: HSV-1, HSV-2 Titer reduction Acyclovir PI (%)
HSV-1: 96.0–99.9
HSV-2: 99.9
[105]
Sargassum wightii Antibacterial Xanthomonas oryzae pv. oryzae CAS ar01 Disk diffusion method   IZ (mm): 3.0–13.5 [106]
Microalgae
Chaetoceros muelleri Antibacterial, Antifungal G(+): Staphyloccocus aureus (ATCC 25923)
G(-):E. coli (ATCC 11775)
Yeast: C. albicans (ATCC 60193)
Broth microdilution method Chloramphenicol, Amphotericin B MBC (mg/mL)
E. coli: 12–15
S. aureus: 12–17
C. albicans: 7–9
[107]
Chlorococcum HS-101 Antibacterial G(+): MRSA, S. aureus ATCC 25923 Disk diffusion method Gentamicin, Amikacin, Cephalosporin, Habekacin, Ampicillin, Vancomycin, Oxytetracyclin, Erythromycin, Cefmetazole, Fosfomycin, Imipenem, Minomycin IZ (mm): 18.7–28.3 [108]
Dunaliella salina Antibacterial, Antifungal G(+): S. aureus ATCC 25923
G(-): E. coli ATCC 11775
Yeast: C. albicans ATCC 60193
Fungi: A. niger ATCC 16404
Disk diffusion method Chloramphenicol (bacteria),
Amphotericin B (yeast and fungi)
MBC (mg/mL)
E. coli: 6–30
S. aureus: 8–30
MFC (mg/mL)
C. albicans: 12–30
A. niger: 32–>35
[109]
Navicula delognei f. elliptica Antibacterial G(+): Staphyloccus aureus (ATCC 25923), S. epidermidis (ATCC 12228)
G(-): S. typhimurium (ATCC 14028), P. vulgaris (ATCC 13315), Enterobacter cloacae (ATCC 23355), E. coli (ATCC 25922), K. pneumoniae (ATCC 13883), Serratia marcescens (ATCC 8100)
Disk diffusion method Ampicillin, Tetracycline, Chloramphenicol IZ (mm)
S. aureus >4
S. typhimurium >4
S. epidermidis >2
P. vulgaris >2
E. coli IZ noticeable
No IZ (E. cloacae, K. pneumoniae, S. marcescens)
[110]
Phaeodactylum tricornutum Antibacterial, Antifungal G(+):
S. aureus
(SH1000), Bacillus weihenstephanensis
(10390), MRSA 252, MRSA 16a, S.
epidermidis, M. luteus (NCIMB 9278), Planococcus citreus
(NCIMB 1493), B. cereus (883-00)
G(-): Alteromonas
haloplanktis (NCIMB 19), A. hydrophila
(NCIMB 1108), Photobacterium
phosphoreum (NCIMB 64), Psychrobacter immobilis (NCIMB 308), Listonella anguillarum
(MT1637),
E. coli B,
P. aeruginosa (NCIMB 10775)
Yeast: C. glabrata, Candida neoformis,
Candida sp., Saccharomyces cerevisiae BY4741a
Disk diffusion method Ampicillin IC50 (µM)/MBC (µM)
S. aureus: 10–40/40–80
[111]
Antibacterial, Antifungal G(+):M. luteus (NCIMB 9278), Planococcus
citreus (NCIMB 1493), B. cereus (883-00), S. aureus (SH1000), B. weihenstephanensis (10390), MRSA 252, MRSA16a, S. epidermidis
G(-): Alteromonas haloplanktis (NCIMB 19), A. hydrophila (NCIMB 1108), Photobacterium phosphoreum (NCIMB 64), Psychrobacter immobilis (NCIMB308), Listonella anguillarum (MT1637), E. coli B, P. aeruginosa (NCIMB 10775)
Yeast:C. glabrata, C. neoformis, Candida sp., S. cerevisiae BY4741a
Agar well diffusion   Growth inhibition (mm2)
≤50–>50
S. aureus: 25–190 mm2
[112]
Synechocystis sp. Antibacterial G(+): S. aureus ATCC 25923
G(+): E. coli ATCC 11775,
Yeast: C. albicans ATCC 60193
Fungi: A. niger ATCC 16404
Broth microdilution method   MBC (mg/mL)
S. aureus: 7
E. coli: 5.6
MFC (mg/mL)
C. albicans: 12
A. niger: 14
[102]
Abbreviations: CC: cytotoxic concentration; EC: effective concentration; HSV: herpes simplex virus; IC: inhibitory concentration; IZ: inhibition zone; MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; MFC: minimum fungicidal concentration; MRSA: methycillin-resistant Staphylococcus aureus; PI: percentage of inhibition; SI: selectivity index; TI: therapeutic index; VII: viral inhibition index.
Several studies have tested the antimicrobial activity of macroalgal extracts obtained with different solvents. Shanab (2007) compared extracts from three macroalgae species (Sargassum dentifoliumLaurencia papillosa, and Jania corniculata) using two solvents, EtOH and CH2Cl2 [94]. Both extracts exhibited similar antimicrobial activity against all microorganisms tested (bacteria and yeasts), except against the mold Aspergillus flavus [94]. Several extracts from Gracilaria gracilis were studied to identify potential bioactive compounds [92]. CHCl3 and Et2O extracts (apolar solvents) presented lower extraction yields (% of dry algal biomass) than extracts from more polar solvents (EtOH, MeOH, and acetone). Less polar solvents isolated minor lipid classes (e.g., neutral and medium polar lipids) and showed lower amounts of soluble carbohydrates and total phenols than polar solvents. However, the diameter of the inhibition zones against B. subtilis were slightly lower in these extracts than in the extracts obtained with polar solvents (rich in soluble carbohydrates and phenolic compounds) [92]. These results suggest that although less polar solvents have lower yields, they contain compounds with interesting antibacterial features.
The lipids or lipid mixtures, their extracting solvent(s), and the methods used for their characterization in algae species are summarized in Table 3. The results of the antimicrobial assays with lipids and lipid-rich extracts from these algae are summarized in Table 4. Chemical structures of lipids isolated from algae are represented in Figure 1.

3.2. Marine Invertebrates

The chemotaxonomic diversity of marine invertebrates is responsible for the large number of novel compounds identified in their phyla. Tropical biodiversity-rich benthic communities have been the most explored, thus the most fruitful in the identification of new potential antimicrobial compounds [113][114][115]. However, less conventional environments such as the Arctic ocean or mesopelagic communities have been started to be surveyed [116][117].
Marine invertebrates comprise a growing source of natural compounds, showing novel structures for biomedical and health-promoting applications [118]. Bioprospection of new compounds from marine invertebrates has revealed to be a prolific work to discover diverse bioactive compounds with action toward a broad spectrum of microorganisms [116][119]. Some of these reports have identified total lipid extracts as a potential source of bioactive compounds, lacking a sequential workflow of isolation, characterization, and purification of the metabolites responsible for the activity [83][119]. Although most of these studies used classical bioprospection methods to identify the bioactive compounds from marine species, others followed eco-friendly approaches by using fishing waste [117] or seafood by-products [120].
Phyla of marine invertebrates recognized as sources of antimicrobial compounds [16][121] include porifera [122][123], crustacean [124][125], mollusk [120][126][127], or cnidaria [113][115]. Some bacteria isolated from marine organisms have also disclosed antibacterial activity, such as Actinobacteria from sponges [26].
The main antibacterial natural products identified in marine invertebrates were peptides, polyketides, alkaloids, terpenes, and lipopeptides [14][128][126][129]. However, several antimicrobial lipids classes have been identified. Marine invertebrates produce an array of unique lipids originating from unusual biosynthetic pathways that are not common in other environments, as a result of thriving in diverse and extreme environments [118][130].
Porifera represents the most studied phylum of marine invertebrates for antimicrobial compounds’ bioprospection, including lipids [131][132]. The high contribution of these ancestral metazoans for bioactive compounds’ research seems to be related to their high filtering activity, pumping water during feeding, which expose them to viruses, bacteria, and eukaryotic organisms (pathogenic and non-pathogenic) [133][134].
Table 5 assembles the information regarding lipids from marine invertebrate species having antimicrobial activity. Table 6 summarizes the information about the antimicrobial properties, the tested organisms, and the antimicrobial assays for each marine invertebrates’ species listed in Table 5Figure 1 illustrates the chemical structure of the main lipid classes with antimicrobial properties from these natural sources.
Table 5. Marine invertebrate lipids or lipid-rich extracts with antimicrobial potential, their origin and extraction method.
Scientific Name Phylum
(Class)
Collection Site Extracting Solvent(s)/Method Isolated Lipids or Lipid Classes Compound Identification Methods Ref.
Acanthodendrilla sp. Porifera (Demospongiae) Gokasho Bay, Tokyo, Japan MeOH. Aqueous residue extracted with Et2O and n-BuOH. Organic extract fractionated by SiO2 (MeOH/CHCl3), purified by ODS column and C18 RP HPLC Steroid sulfates 1H and 13C NMR [135]
Porifera (Demospongiae) Kundingarengkeke
Island, Indonesia
EtOH, acetone and MeOH. Crude extract partitioned between aqueous MeOH and hexane, EtOAc, and BuOH. Hexane extract fractionated on normal-phase SiO2 column (n-hexane/EtOAc, 7:3, v/v). Purification by semi-preparative HPLC Sesterterpenes
(Luffariellolide derivatives, Acantholides)
1H and 13C NMR, ESI-MS, HR-EI-MS [136]
Agelas oroides Porifera (Demospongiae) Gökçeada, Northern Aegean Sea,
Turkey
MeOH, MeOH/CHCl3 (1:1, v/v) and CHCl3. Extract dissolved in MeOH/H2O (9:1, v/v) partitioned against n-hexane. n-hexane, CH3Cl and MeOH extracts fractionated on SiO2 (EtOAc (0 → 100%) in hexane). Sephadex LH20 and C18 flash column FA 1H and 13C NMR, 1D and 2D NMR, GC-MS, ESI-MS [137]
Caminus sphaeroconia Porifera (Demospongiae) Dominica MeOH extracts chromatographed on Sepahdex LH 20 (MeOH and EtOAc/MeOH/H2O 20:5:2). Purification by gradient on SiO2 (CH2Cl2 to CH2Cl2/MeOH 9:1, v/v) Glycolipid (Caminoside) 1H and 13C NMR, ESI-MS [123]
Dominica MeOH extract purified by Sephadex LH-20 (MeOH). Sephadex LH-20 (EtOAc/MeOH/H2O (20:5:2, v/v)) Glycolipid (Caminoside) 1H and 13C NMR, ESI-MS [138]
Dysidea arenaria Porifera (Demospongiae) Hainan Island, South China Sea, China CHCl3-soluble portion was repartitioned between petroleum ether and 90% MeOH. MeOH extract on flash SiO2 column (ether/EtOAc gradient) Sesquiterpenoid
(Sesquiterpenoid hydroquinone)
1H and 13C-NMR, ESI-MS [139]
Dysidea sp. Porifera (Demospongiae) Lakshadweep Islands, Kerala, India EtOAc and MeOH. EtOAc extract chromatographed on Sephadex LH20 (MeOH/CHCl3, 1:1, v/v), SiO2 (2% EtOAc petroleum ether) Sesterterpenes
(Sesterterpene sulfates)
1H and 13C NMR, HR-FAB-MS [140]
Erylus lendenfeldi Porifera (Demospongiae) Gulf of Eilat, Red Sea MeOH/CHCl3, RP on a C18 column (decreasing percentage of H2O in MeOH) Steroidal glycoside
(Eryloside)
1H and 13C NMR, UV, IR [141]
Erylus placenta Porifera (Demospongiae) Hachijo Island, Japan n-PrOH/H2O (3:1, v/v). Extracts partitioned between H2O and CHCl3. H2O layer partitioned between n-BuOH and H2O. BuOH fraction separated by C18 flash (n-PrOH/H2O (1:9, 3:7, 5:5, and 8:2, v/v) and CHCl3/MeOH/H2O(6:4:1, v/v)) Steroidal glycoside
(Sokodosides)
1H and 13C NMR, GC-FID, UV [142]
Euryspongia sp. Porifera (Demospongiae) Light House Reef, Koror, Palau MeOH. Extracts fractionated by HP20SS column (acetone/H2O) Steroid sulfates (Eurysterols) 1H and 13C NMR, ESI-MS, UV, IR [143]
Fasciospongia sp. Porifera (Demospongiae) Cape Leeuwin, Western Australia EtOH extract partitioned into n-BuOH and H2O soluble fractions. n-BuOH fraction subsequently defatted by sequential trituration in n-hexane and CH2Cl2 soluble fractions. CH2Cl2 fractions subjected to SPE or HLPC Meroterpene
(Meroterpene sulfate fascioquinol)
1H and 13C NMR, HR-ESI-MS, UV [144]
Halichondria sp. Porifera (Demospongiae) Unten Port, Okinawa, Japan Methanolic extract partitioned between H2O and EtOAc. EtOAc soluble material subjected to SiO2 column (CHCl3/MeOH, (95:5, v/v) and petroleum ether/Et2O (9:1, v/v)) Sesquiterpenoids
(Halichonadins)
1H and 13C NMR, EI-MS, IR [145]
Porifera (Demospongiae)   MeOH extract partitioned between H2O and EtOAc. EtOAc-soluble material subjected to SiO2 column (n-hexane/EtOAc, 1:1 → MeOH). MeOH fraction subjected to SiO2 column (CHCl3/MeOH, 95:5 → 7:3). CHCl3/MeOH (7:3) fraction separated on SiO2 column (EtOAc/MeOH, 5:1 → MeOH) Sesquiterpenoid
(Halichonadins)
1H and 13C NMR, ESI-MS, HR-ESI-MS, IR [146]
Haliclona simulans Porifera (Demospongiae) Kilkieran Bay, Galway, Ireland Acetone and MeOH extracts subjected to HP20 chromatography (100% H2O → 100% MeOH). Fractionated on flash forward system. SiO2 column (100% hexane → 100% EtOAc) Steroids
(24-vinyl-cholest-9-ene-3β,24-diol, 20-methyl-pregn-6-en-3β-ol,5α,8α-epidioxy, 24-methylenecholesterol)
1H- and 13C NMR, GC-MS [147]
Jaspis stellifera Porifera (Demospongiae) Ishigaki Island, Okinawa, Japan MeOH. EtOAc soluble material subjected to SiO2 column (CHCI3/MeOH, 9:1 and hexane/EtOAc, 3:7, v/v). EtOAc-soluble material subjected to SiO2 columns and C18 HPLC Nortriterpenoids
(Jaspiferals)
1H and 13C NMR, EI-MS, UV, IR [148]
Luffariella geometrica Porifera (Demospongiae) Great Australian Bight, Australia CH2Cl2. Sequential fractionation to obtain pure compounds Sesterterpenes
(Luffarins)
1H and 13C NMR, EI-MS, UV, IR [149]
Luffariella variabilis Porifera (Demospongiae) Western Carolines, Palau CH₂Cl₂, purified by chromatography Sesterterpenoids
(Manoalide)
1H and 13C NMR, UV, IR [150]
Western Carolines, Palau CH₂Cl₂, purified by chromatography Sesterterpenoids
(Manoalides)
1H and 13C NMR, UV, IR [151]
Melophlus sarasinorum Porifera (Demospongiae) Makassar, Sulawesi Island, Indonesia Acetone and MeOH. Extract partitioned between EtOAc and H2O. Aqueous extract on HP20 (MeOH, H2O). MeOH eluate on C18 (MeOH and H2O, gradient elution) Steroidal glycosides
(Sarasinoside)
1H and 13C NMR, HR-ESI-MS, LC-MS, UV [152]
Oceanapia sp. Porifera (Demospongiae) Kamagi Bay, Sada Peninsula, Japan MeOH extracts partitioned between ether and H2O. Organic phase partitioned between n-hexane and MeOH/H2O (9:1, v/v). Aqueous MeOH fraction subjected to C18. Purification on SiO2 column (CHCl3, CHCl3/MeOH (9:1), CHCl3/MeOH/H2O (6:4:1), and MeOH) Acetylenic acid 1H and 13C NMR, FAB-MS, UV, IR [153]
Paragrantia cf. waguensis Porifera (Calcarea) Onna village, Okinawa, Japan MeOH extract partitioned between H2O and EtOAc. EtOAc extract subjected to Sephadex LH20 (CH2Cl2/MeOH, 1:1, v/v). Fraction separation on RP HPLC Acetylenic acid 1H and 13C NMR, ESI-MS, UV, IR [154]
Petrosia weinbergi Porifera (Demospongiae) Acklin Island, Bahamas MeOH/CHCl3 (1:1, v/v). Aqueous suspension extracted with EtOAc, EtOAc/n-BuOH (1:1), and n-BuOH. Active extracts fractionated by C18 HPLC Steroid sulfates
(Weinbersterol disulfates)
1H and 13C NMR, FAB-MS, IR [155]
Poecillastra wondoensis, Rhabdastrella wondoensis
(two-sponge association)
Porifera (Demospongiae) Cheju Island, South Korea MeOH (70%). Extract partitioned with Et2O and H2O. Aqueous phase extracted with n-BuOH, subjected to C18 flash chromatography and Sephadex LH-20. Purification on C18 HPLC Steroidal glycosides
(Wondosterols)
1H and 13C NMR, FAB-MS, UV, IR [156]
Pseudoceratina purpurea Porifera (Demospongiae) Kaunakakai Harbor, O’ahu island, Hawaii, USA EtOH and methylene chloride. Combined extracts partitioned (hexane, methylene chloride and BuOH) Isolation: SiO2 flash column (hexane). Purification: Sephadex LH-20 Bromotyramine homoserine-derived (Mololipids) 1H and 13C NMR, HR-FAB-MS, UV, IR [157]
Axinyssa digitata Porifera (Demospongiae) Tunisia Acetone extract partitioned between H2O and Et2O. Aqueous residue re-extracted with n-BuOH and chromatographed on Sephadex LH-20 column (MeOH) and C18 HPLC Steroid sulfates
(Halistanol sulfates)
1H and 13C NMR, FAB-MS [158]
Siliquariaspongia sp. Porifera (Demospongiae) Motualevu reef, Fiji H2O and MeOH/CH2Cl2 (1:1, v/v). n-BuOH-soluble material from the aqueous extract and CHCl3-soluble material from the organic extract chromatographed on Sephadex LH-20 (MeOH/H2O, 3:1, v/v). Purification by RP HPLC Brominated long-chain acids (Motualevic acids) 1H- and 13C-NMR, LC-MS, HR-ESI-MS, FT-IR [159]
Siphonodictyon coralliphagum Porifera (Demospongiae) Lighthouse Reef and Glover Reef, Belize EtOH. Aqueous suspension extracted with CH2Cl2, EtOAc and n-BuOH. EtOAc extract fractionated by chromatography and purified on SiO2 plates Phenolic aldehydes
(Siphonodictyal)
1H and 13C NMR, IR, UV [160]
Spheciospongia purpurea Porifera (Demospongiae) Weizhou Island, Guangxi Autonomous Region, China Acetone. Extract resuspended in H2O and partitioned with Et2O. Et2O extract fractionated on SiO2 (petroleum ether/acetone, 1:0 → 0:1), Sephadex LH-20 (CH2Cl2/MeOH, 1:1). Purification by C18 HPLC Lysophospholipids
(PAF(16:0), PAF (16:1 n-5), PAF (18:0), PAF (18:1 n-7), PAF (18:1 n-11), PAF (18:1 n-13))
1H and 13C NMR, IR, ESI-MS, HR-ESI-MS, LC-MS/MS [122]
Family Spongiidae Porifera (Demospongiae) Unten Port, Okinawa, Japan MeOH extract partitioned between EtOAc and H2O. H2O-soluble portions extracted with n-BuOH. EtOAc and n-BuOH, soluble materials purified by SiO2 columns and C18 HPLC Sesquiterpenoid
(Sesquiterpenoid quinones, Nakijiquinones)
1H and 13C NMR, FAB-MS, UV, IR [161]
Suberites domuncula Porifera (Demospongiae) Rovinj, Croatia MeOH and CHCl3. Combined extracts partitioned between H2O and BuOH. Organic layer fractionated by medium-pressure on C18 (linear gradient H2O → MeOH → CHCl3). Purification by RP HPLC Lysophospholipids
(PAF)
1H NMR, FIA-MS, LC-MS/MS [134]
Topsentia sp. Porifera (Demospongiae) Chuuk, Federated States of Micronesia CH2Cl2/MeOH (1:1, v/v). Extract fractionated by SPE using C18 cartridges Steroid sulfates
(Eurysterols)
1H and 13C NMR, HR-ESI-MS, IR, UV [162]
Xestospongia sp. Porifera (Demospongiae) Rasch Pass of Madang, Papua New Guinea Hexane, CH2Cl2 and EtOAc. Hexane extract subjected to flash column (gradient hexane/EtOAc (95:5, v/v) → EtOAc) Brominated FA 1H and 13C NMR, IR, UV, HR-EI-MS, HR-APCI-MS, HR-FAB-MS [114]
Hyas araneus,
Podopthalmus vigil,
Lauridromia dehanni, Charybdis helleri, Portunus sanguinolentus,
Portunus pelagicus
Arthropoda (Malacostraca) Vellar Estuary, India MeOH Lysoglycerolipids/glycerides
FA/esters
1H and 13C NMR, ESI-MS/MS, FT-IR [124]
Meganyctiphanes norvegica Arthropoda (Malacostraca) Straits of Messina, central Mediterranean Sea, Italy H2O/acetone (1:1, v/v). Supernatant recovered with CH₂Cl₂. Extracts fractionated by semi-preparative RP HPLC-DAD on SB-C8 column FA
(EPA, DHA, ETA)
LC-MS, HPLC-UV-HR-MS [117]
Aplidium sp. Chordata (Ascidiacea) Northland, New Zealand MeOH-CH2Cl2 extract fractionated with RF C18 flash column (MeOH/H2O), Sephadex LH20 (MeOH), semi-preparative C18 HPLC Meroterpene derivatives
(Rossinones)
1H and 13C NMR, HR-FAB-MS, UV, IR [163]
Eunicea succinea Cnidaria (Anthozoa) Mona Island, Puerto Rico, CHCl3/MeOH (1:1, v/v). Extract fractionated by SiO2 column chromatography FA
((5Z,9Z)-14-methyl-5,9-pentadecadienoic acid)
1H and 13C NMR, GC-MS, HR-MS, IR [113]
Lobophytum crassum Cnidaria (Anthozoa) Rameswaram, India Aqueous EtOH (95%), MeOH. Extract partitioned with H2O and EtOAc. EtOAc extract fractionated on SiO2 column (gradient hexane/EtOAc) Cembranoid diterpene
Ceramide
1H and 13C NMR, FAB-MS, IR [164]
Antillogorgia elisabethae Cnidaria (Anthozoa) Bahamas MeOH. Extract redissolved in EtOH/H2O (2:8, v/v). EtOH/H2O extract reextracted with EtOAc, SiO2 column (hexane, 0 → 100% EtOAc/hexane, 0 → 100% MeOH/EtOAc). Fractions subjected to RP HPLC (0 → 100% H2O/Acetonitrile) Diterpenes
(Elisabethin)
1H, 13C NMR, HR-EI-MS, UV, IR [165]
Sinularia grandilobata,
Sinularia sp.
Cnidaria (Anthozoa) Andaman Islands, India EtOH. Extract reextracted with EtOAc. Combined extracts fractionated on SiO2 column (gradient system hexane/EtOAc (100:0 → 0:100)) Sphingolipids
Glycolipids
1H and 13C NMR, EI-MS [115]
Holothuria scabra Echinodermata (Echinozoa) Red Sea, Egypt EtOH (70%), MeOH, EtOAc and CHCl3/MeOH (2:1, v/v) Pigments
(Carotenoids)
HPLC-UV/VIS, GC-MS [166]
Dosidicus gigas Mollusca (Cephalopoda) Hermosillo, Mexico Acidified MeOH (MeOH/HCl, 99:1, v/v) Pigments
(Ommochrome)
1H and 13C NMR, FT-IR, [120]
Saccostrea glomerata Mollusca
(Bivalvia)
Kovalam, Tamilnadu, India Hexane, EtOAc and MeOH. Purification on SiO2 column (hexane/EtOAc and EtOAc/MeOH) Sterols [Cholesta-5,22-dien-3β-ol, Cholesterol, Ergosta-5,22-dien-3-ol, (3β,22E)-],
FA (6-Octadecenoic acid, Octadecanoic acid)
GC-MS, FT-IR [167]
Table 6. Antimicrobial activity of lipids or lipid-rich extracts from marine invertebrates.
Scientific Name Activity Tested (Micro)Organisms Antimicrobial Testing Method/Evaluation Reference Antimicrobial (Positive Control) MIC, Diameter of Inhibition Zone (IZ) or Other Ref.
Acanthodendrilla sp. Antifungal Yeast: S. cerevisiae (A364A, STX338-2C, 14028g, GT160-45C) Disk diffusion method   IZ (mm): 7–11 [135]
Antibacterial
Antifungal
G(+): S. aureus, B. subtilis
G(-):
E. coli,
Yeast: C. albicans
Fungi: Cladosporium herbarum
Disk diffusion method   IZ (mm)
S. aureus: 7–11
B. subtilis: 7–12
E. coli: 7–12
C. albicans: 9–10
C. herbarum: 10–20
[136]
Agelas oroides Antibacterial, Antiplasmodial Acid-fast bacterium: M. tuberculosis
Parasitic protozoa: P. falciparum,
Trypanosoma brucei rhodesiense,
T. cruzi, L. donovani
G(-): E. coli
[3H]-hypoxanthine incorporation assay, 96-well microtiter plates, inhibition of enzymatic activity Artemisinin, Benznidazole, Melarsoprol, Miltefosine, Podophyllotoxin, Triclosan IC50 (µg/mL)
Antibacterial
M. tuberculosis: 9.4–>50
E. coli: 0.07–>50
Antiprotozoal: 0.35–>30
[137]
Caminus sphaeroconia Antibacterial G(+): MRSA, Enterococcus (VRE)
G(-): E. coli
in vitro inhibition   MIC (µg/mL)
MRSA: 12
VRE: 12
E. coli: > 100
[123]
Antibacterial G(+): MRSA, Enterococcus (VRE)
G(-): Xanthomonas maltophilia
Plant pathogen: Pythium ultimum
Disk diffusion method   MIC (µg/disk)
MRSA: 6.3–>100
VRE: 3.1–>100
X. maltophilia: 25–>100
P. ultimum: 25–>100
[138]
Dysidea arenaria Antiviral Virus: HIV-1   PFA IC50 (µM) 16.4–239.7 [139]
Dysidea sp. Antibacterial G(+): S. aureus, B. subtilis, M. luteus
G(-): P. vulgaris, S. typhimurium, E. coli
Broth macrodilution method Linezolid MIC (µg/mL) 0.117–>15 [140]
Erylus lendenfeldi Antifungal Yeast: C. albicans     MIC (µg/mL) 15.6 [141]
Erylus placenta Antifungal G(+): S. aureus
G(-): E. coli
Fungus: Mortierella ramanniana
Yeasts: S. cerevisiae (cdc28, act1-1, erg6)
Disk diffusion method   IZ (mm)
M. ramanniana: 11–12
S. cerevisiae: 8–18
[142]
Euryspongia sp. Antifungal Yeasts: C. albicans (ATCC 32354, wild-type) (ATCC 90873, amphotericin B-resistant) Liquid antifungal assay Amphotericin B MIC (µg/mL): 15.6–62.5 [143]
Fasciospongia sp. Antibacterial G(+):
S. aureus (ATCC 25923, ATCC 9144), B. subtilis (ATCC 6051, ATCC 6633)
G(-):
E. coli (ATCC 11775), P. aeruginosa (ATCC 10145)
Yeast: C. albicans (ATCC 90028)
96-well microtiter plate Penicillin, Fluconazole IC50 (µM)
S. aureus: 0.95–2.5
B. subtilis: 0.3–7.0
[144]
Halichondria sp. Antibacterial Antifungal G(+): M. luteus, B. subtilis
G(-):
E. coli
Yeasts: C. neoformans,
C. albicans,
Fungi: Paecilomyces variotii, A. niger, A. fumigatus
Broth microdilution method   MIC (µg/mL)
M. luteus: 0.52
C. neoformans: 0.0625
C. albicans: 2.09
P. variotii: 1.04
A. niger: 1.04
A. fumigatus: 1.04
[145]
Antibacterial Antifungal G(+): M. luteus
Yeast: C. neoformans
Fungi: T. mentagrophytes
    MIC (µg/mL)
M. luteus: 4
T. mentagrophytes: 8–16
C. neoformans: 16
[146]
Haliclona simulans Anti-mycobacterial
Antitrypanosomal
Acid-fast bacterium: Mycobacterium marinum
Parasitic trypanosomatida: T. brucei
Broth microdilution method Gentamycin MIC (µM): M. marinum: 156.9–288.8
T. b. brucei: 4.58–21.56
[147]
Jaspis stellifera Antibacterial
Antifungal
G(+): Sarcina lutea
Yeast: C. neoformans
Fungi: T. mentagrophytes
    MIC (µg/mL)
S. lutea: 50
C. neoformans: 50
T. mentagrophytes: 12.5
[148]
Luffariella geometrica Antibacterial G(+): S. aureus, Micrococcus sp.
Yeast: S. cerevisiae
Disk diffusion method   EC (µg/disk)
S. aureus: 100
Micrococcus sp.: 100
[149]
Luffariella variabilis Antibacterial G(+): Streptomyces pyogenes, S. aureus     Active against S. pyogenes, S. aureus [150]
Antibacterial G(+): S. aureus, B. subtilis
G(-): E. coli, P. aeruginosa
Yeast: C. albicans
    Active against S. aureus, B. subtilis [151]
Melophlus sarasinorum Antibacterial
Antifungal
G(+): B. subtilis (DSM2109)
G(+): E. coli (DSM10290)
Yeast: S. cerevisiae
Disk diffusion method   IZ (mm)
B. subtilis: 9
S. cerevisiae: 10–13
[152]
Oceanapia sp. Antibacterial
Antifungal
G(+):
B. subtilis, S. aureus
G(-): E. coli, P. aeruginosa
Yeast: S. cerevisiae, C. albicans (GT160-45C, cdc5, act1-1, YAT2296c)
Fungi: Penicillium chrysogenum, Mortierella ramanniana
Disk diffusion method   IZ (mm)
S. cerevisiae: 6.5–10
C. albicans: 8
E. coli: 8.5–12.0
P. aeruginosa: 8.5–13.0
B. subtilis: 11.0
S. aureus: 9.5–13.5
[153]
Paragrantia cf. waguensis Antibacterial G(+):
S. aureus (IAM 12084)
G(-): E. coli (ATCC 12600)
Broth microdilution method Rifampicin, Nalidixic acid MIC (µg/mL)
S. aureus: 64
E. coli: 128
[154]
Petrosia weinbergi Antiviral Viruses: Feline leukemia virus (FeLV), HIV     EC50 (µg/mL)
FeLV: 4.0–5.2
HIV: 1.0
[155]
Poecillastra wondoensis, Rhabdastrella wondoensis
(two-sponge association)
Antibacterial G(-): P. aeruginosa,
E. coli
Disk diffusion method   Active concentration 10 µg/disk [156]
Pseudoceratina purpurea Antiviral Virus: HIV-1     EC50 (µM): 52.2 [157]
Axinyssa digitata Antiviral Viruses: HIV-1, HIV-2     EC50 (µg/mL)
HIV-1: 3–6
HIV-2: Not referred
[158]
Siliquariaspongia sp. Antibacterial G(+):
S. aureus, MRSA
Disk diffusion method, Microbroth dilution   MIC50 (µg/mL)
S. aureus: 1.2–10.9
S. aureus (MRSA):
3.9–400
[159]
Siphonodictyon coralliphagum Antibacterial G(+): S. aureus,
B. subtilis
    Active against S. aureus, B. subtilis [160]
Spheciospongia purpurea Antifungal Yeasts: C. neoformans (32609), C. glabrata (537)
Fungi: T. rubrum (Cmccftla), A. fumigatus (07544),
Broth dilution Amphotericin B, Fluconazole, Voriconazole, Ketoconazole MIC80 (µg/mL)
C. neoformans: 4–32
C. glabrata: 8–64
A. fumigatus: >64
T. rubrum: >64
[122]
Family Spongiidae Antibacterial
Antifungal
G(+): B. subtilis, M. luteus, S. aureus
G(-): E. coli
Yeasts: C. albicans, C. neoformans
Fungi: A. niger
    MIC (µm/mL)
B. subtilis: 33.3
E. coli: >33.3
M. luteus: 16.7–33.3
S. aureus: 33.3
C. neoformans: 8.35
C. albicans: 8.35
A. niger: 16.7
[161]
Suberites domuncula Antibacterial Bacterium SB1 (strain isolated from S. domuncula with >98.0% similarity to the alpha-Proteobacterium (MBIC3368) Disk diffusion method   IZ (mm): 4.5–6.8 [134]
Topsentia sp. Antifungal G(+):MRSA,
Acid-fast bacterium: M. intracellulare
Parasitic protozoa: P. falciparum (D6 and W2 clones),
L. donovani
Yeasts: C. albicans, C. glabrata, Candida krusei, S. cerevisiae, C. neoformans
Fungus: A. fumigatus
Broth microdilution method Beauvericin FIC (µM)
C. albicans: 0.2–1.8
S. cerevisiae: 0.08–1.34
[162]
Xestospongia sp. Antibacterial G(+): MRSA, S. mutans, S. sobrinus Disk diffusion method   IZ (mm)
MRSA: 12
S. mutans: 17
S. sobrinus: 14
[114]
Hyas araneus, Podopthalmus vigil, Lauridromia dehanni, Charybdis helleri, Portunus sanguinolentus, Portunus pelagicus Antibacterial
Antifungal
G(+): S. aureus, MRSA, S. pyogenes
G(-): E. coliP. aeruginosa, S. typhiS. flexneriKlebsiella sp., V. choleraeAcinetobacter sp.
Yeasts: Rhodotorula
sp., C. albicansC. neoformans
Fungi: A. fumigatusA. niger
Disk diffusion method Penicillin, Ketoconazole IZ (mm)
S. pyogenes: 1
S. typhi: 1–3
S. flexneri: 1–6
V. cholerae: 1–4
Acinetobacter sp.: 1
[124]
Meganyctiphanes norvegica Antibacterial G(+): MRSA, MB5393, MSSA, ATCC 29213
G(-): E. coli (ATCC 25922), K. pneumoniae (ATCC 700603)
Acid-fast bacterium: M. tuberculosis (H37Ra ATCC 25177)
Well plate, REMA method Vancomycin hydrochloride, Aztreonam, Gentamycin sulfate MIC (µg/mL)
MRSA: 80–320
MSSA: 320
M. tuberculosis: 320
[117]
Aplidium sp. Antibacterial
Antiviral
Antifungal
G(+): B. subtilis
Fungi: T. mentagrophytes
Virus: HSV-1
Disk diffusion method   IZ (mm)
B. subtilis/T. mentagrophytes: 3–6
Antiviral activity at 2 μg/disk
[163]
Eunicea succinea Antibacterial G(+): S. aureus (ATCC 25923), E. faecalis (ATCC 29212)
G(-): P. aeruginosa (ATCC 27853), E. coli (ATCC 25922)
Broth microdilution method   MIC (µmol/mL)/IC50 (µg/mL)
S. aureus: 0.24/36
E. faecalis: 0.16/<10
[113]
Lobophytum crassum Antibacterial G(+): S. epidermidis, B. subtilis, S. aureus
G(-): P. aeruginosa
Disk diffusion method Ampicillin IZ (mm)
S. epidermidis: 9.5–16.5
B. subtilis: 8.5–18.0
S. aureus: 9.0–19.5
P. aeruginosa: 9.0–14.0
[164]
Antillogorgia elisabethae Antibacterial G(+): S. pyogenes (ATCC 19615), S. aureus (ATCC 25923), E. faecalis (ATCC 19433)
G(-): E. coli (ATCC 25933), P. aeruginosa (ATCC 27853)
Disk diffusion method   MIC (µg/mL)/IZ (mm)
S. pyogenes: 0.8–1.0/12–17
S. aureus: 2.0–2.3/8–11
E. faecalis: 3.2–3.8/8–9
[165]
Sinularia grandilobata,
Sinularia sp.
Antibacterial
Antifungal
G(+): B. subtilis (MTCC 441), Bacillus pumilus (NCIM 2327)
G(-): E. coli
(MTCC 443), P. aeruginosa (MTCC 1688)
Yeast: C. albicans (MTCC 183)
Fungi: A. niger (MTCC 1344), Rhizopus oryzae (MTCC 1987)
Disk diffusion method   IZ (mm)
B. subtilis: 11–18
B. pumilus: 11–16
E. coli: 11–17
P. aeruginosa: 11–17
C. albicans: 8–17
A. niger: 10–16
R. oryzae: 10–15
[115]
Holothuria scabra Antibacterial G(+): S. aureus (ATCC 6538), E. faecalis
G(-): P. aeruginosa (ATCC 8739), V. damsela, E. coli
Well-cut diffusion technique   AU
S. aureus: 1.2–2.8
E. faecalis: 1.7–3.2
P. aeruginosa: 1.4–1.8
V. damsela: 1.6
E. coli: 1.2
[166]
Dosidicus gigas Antibacterial
Antifungal
G(+): B. cereus (CCM 2010), Clostridium perfringens (CCM 4991), Listeria monocytogenes (CCM 4699), S. aureus subs. aureus (CCM 2461)
G(-): Haemophilus influenza (CCM 4456), K. pneumoniae (CCM 2318), S. enterica subs. enterica (CCM 3807)
Yeasts: C. albicans (CCM 8186), C. glabrata (CCM 8270), C. tropicalis (CCM 8223)
Fungi: Aspergillus clavatus, A. flavus, Aspergillus versicolor, Penicillium chrisogenum, Penicillium griseofulvum, Penicillium expansum
Disk diffusion method   Inhibition (%)
B. cereus: 39.4
C. perfringens: 45.5
L. monocytogenes: 60.7
S. aureus subs. aureus: 57.8
H. influenza: 54.5
K. pneumoniae: 39.4
S. enterica subs. enterica: 93.9
C. albicans: 66.7
C. glabrata: 42.4
C. tropicalis: 33.3
A. clavatus: 48.4
A. flavus: 42.4
A. versicolor: 42.4
P. chrisogenum: 39.4
P. griseofulvum: 42.4
P. expansum: 48.5
[120]
Saccostrea glomerata Antibacterial
Antifungal
G(+): S. aureus
G(-): P. aeruginosaV. harveyiA. hydrophila, P. aeruginosaV. harveyiV. parahaemolyticus
Yeast: C. albicans
Fungi: A. nigerA. flavusFusarium sp.
Virus: White spot syndrome virus (WSSV)
Disk diffusion method   IZ (mm)
P. aeruginosa: 4.1–16.0
V. harveyi: 3.8–14.9
A. hydrophila: 5.1–14.5
A. niger: No activity–High activity
C. albicans: No activity–High activity
Fusarium sp: No activity–High activity
Antiviral activity: PI < 91.85%
[167]
Abbreviations: AU: activity unit for the clear zone; EC: effective concentration; FIC: fractional inhibitory concentration; IZ: inhibition zone; MIC: minimum inhibitory concentration; PI: percentage inhibition.

This entry is adapted from the peer-reviewed paper 10.3390/antibiotics9080441

References

  1. Mikulic, M. Total Consumption of Antibiotics in WHO Countries in 2016 (In Metric Tons). Available online: https://www.statista.com/statistics/949926/consumed-amount-of-antibiotics-in-who-countries/ (accessed on 20 February 2020).
  2. World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 3 March 2020).
  3. World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 4 March 2020).
  4. World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 3 March 2020).
  5. Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A Review. Front. Microbiol. 2019, 10, 539.
  6. Cassini, A.; Hogberg, L.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.; Colomb-Cotinat, M.; Kretzschmar, M.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66.
  7. McCarthy, N. Antibiotic Resistance—Superbugs Kill 33,000 Europeans Every Year. Available online: https://www.statista.com/chart/16012/median-number-of-deaths-due-to-antibiotic-resistance-bacteria/ (accessed on 3 March 2020).
  8. World Health Organization. No Time to Wait: Securing the Future from Drug-Resistant Infections. Report to the Secretary-General of the United Nations. Available online: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/ (accessed on 4 March 2020).
  9. World Health Organization. Lack of New Antibiotics Threatens Global Efforts to Contain Drug-Resistant Infections. Available online: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections (accessed on 3 March 2020).
  10. Alves, E.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cunha, A.; Tome, J.; Almeida, A. An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 2014, 6, 141–164.
  11. Alves, E.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cunha, A.; Nadais, H.; Almeida, A. Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J. Photochem. Photobiol. C 2015, 22, 34–57.
  12. Almeida, A.; Cunha, A.; Gomes, N.C.M.; Alves, E.; Costa, L.; Faustino, M.A.F. Phage therapy and photodynamic therapy: Low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 2009, 7, 268–313.
  13. Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019, 27, 323–338.
  14. Hughes, C.C.; Fenical, W. Antibacterials from the sea. Chemistry 2010, 16, 12512–12525.
  15. Gray, D.A.; Wenzel, M. Multitarget approaches against multiresistant superbugs. ACS Infect. Dis. 2020, 6, 1346–1365.
  16. Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262.
  17. Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs 2016, 14, 81.
  18. Hayashi, M.A.; Bizerra, F.C.; Da Silva, P.I. Antimicrobial compounds from natural sources. Front. Microbiol. 2013, 4, 195.
  19. Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118.
  20. Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114.
  21. McGaw, L.J.; Jäger, A.K.; Van Staden, J. Antibacterial effects of fatty acids and related compounds from plants. S. Afr. J. Bot. 2002, 68, 417–423.
  22. Bergsson, G.; Hilmarsson, H.; Thormar, H. Chapter 3—Antibacterial, antiviral and antifungal activities of lipids. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; Wiley: Chichester, UK, 2010; pp. 47–80.
  23. Pasdaran, A.; Hamedi, A. Chapter 14—Natural products as source of new antimicrobial compounds for skin infections. In The Microbiology of Skin, Soft Tissue, Bone and Joint Infections; Kon, K., Rai, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 223–253.
  24. Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652.
  25. Stefanović, O.D. Synergistic activity of antibiotics and bioactive plant extracts: A study against Gram-positive and Gram-negative bacteria. In Bacterial Pathogenesis and Antibacterial Control; Kırmusaoğlu, S., Ed.; IntechOpen: London, UK, 2018; pp. 23–48.
  26. De Menezes, C.B.A.; Afonso, R.S.; de Souza, W.R.; Parma, M.M.; de Melo, I.S.; Fugita, F.L.S.; Moraes, L.A.B.; Zucchi, T.D.; Fantinatti-Garboggini, F. Williamsia aurantiacus sp. nov. a novel actinobacterium producer of antimicrobial compounds isolated from the marine sponge. Arch. Microbiol. 2019, 201, 691–698.
  27. Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Boudabbous, A.; Stal, L.J.; Cretoiu, M.S.; El Bour, M. Antimicrobial activities of bacteria associated with the brown alga Padina pavonica. Front. Microbiol. 2016, 7, 1072.
  28. Tiku, A.R. Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. In Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 845–868.
  29. Prost, I.; Dhondt, S.; Rothe, G.; Vicente, J.; Rodriguez, M.J.; Kift, N.; Carbonne, F.; Griffiths, G.; Esquerré-Tugayé, M.T.; Rosahl, S.; et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 2005, 139, 1902–1913.
  30. Blee, E. Impact of phyto-oxylipins in plant defense. Trends Plant. Sci. 2002, 7, 315–321.
  31. Feussner, I.; Wasternack, C. The lipoxygenase pathway. Annu. Rev. Plant. Biol. 2002, 53, 275–297.
  32. Deboever, E.; Deleu, M.; Mongrand, S.; Lins, L.; Fauconnier, M.L. Plant-pathogen interactions: Underestimated roles of phyto-oxylipins. Trends Plant. Sci. 2020, 25, 22–34.
  33. D’Oca, C.; Coelho, T.; Marinho, T.; Hack, C.; Duarte, R.; da Silva, P.; D’Oca, M. Synthesis and antituberculosis activity of new fatty acid amides. Bioorg. Med. Chem. Lett. 2010, 20, 5255–5257.
  34. Dembitsky, V.; Shkrob, I.; Rozentsvet, O. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry 2000, 54, 965–967.
  35. Gopalakrishnan, S.; Srinivas, V.; Alekhya, G.; Prakash, B.; Kudapa, H.; Varshney, R. Evaluation of broad-spectrum Streptomyces sp. for plant growth promotion traits in chickpea (Cicer arietinum L.). Philipp. Agric. Sci. 2015, 98, 270–278.
  36. Tanvir, R.; Javeed, A.; Rehman, Y. Fatty acids and their amide derivatives from endophytes: New therapeutic possibilities from a hidden source. FEMS Microbiol. Lett. 2018, 365.
  37. Gunstone, F.D.; Harwood, J.L. Occurrence and characterisation of oils and fats. In The Lipid Handbook with CD-ROM, 3rd ed.; Gunstone, F.D., Harwood, J.L., Dijkstra, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 51–156.
  38. Fafal, T.; Yilmaz, F.F.; Birincioğlu, S.S.; Hoşgör-Limoncu, M.; Kivçak, B. Fatty acid composition and antimicrobial activity of Asphodelus aestivus seeds. Hum. Vet. Med. 2016, 8, 103–107.
  39. Shukla, S.; Hegde, S.; Kumar, A.; Chaudhary, G.; Tewari, K.; Upreti, D.; Pal, M. Fatty acid composition and antibacterial potential of Cassia tora (leaves and stem) collected from different geographic areas of India. J. Food Drug Anal. 2018, 26, 107–111.
  40. Sati, A.; Sati, S.; Sati, N.; Sati, O. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits. Nat. Prod. Res. 2017, 31, 713–717.
  41. Abdelillah, A.; Houcine, B.; Halima, D.; Meriel, C.S.; Imane, Z.; Eddine, S.D.; Abdallah, M.; Daoudi, C.S. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus. Asian Pac. J. Trop. Biomed. 2013, 3, 443–448.
  42. Nascimento, G.; Souza, D.; Santos, A.; Batista, J.; Rathinasabapathi, B.; Gagliardi, P.; Goncalves, J. Lipidomic profiles from seed oil of Carapa guianensis Aubl. and Carapa vasquezii Kenfack and implications for the control of phytopathogenic fungi. Ind. Crops Prod. 2019, 129, 67–73.
  43. Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 775–780.
  44. Salvador, M.; Ferreira, E.; Pral, E.; Alfieri, S.; Albuquerque, S.; Ito, I.; Dias, D. Bioactivity of crude extracts and some constituents of Blutaparon portulacoides (Amaranthaceae). Phytomedicine 2002, 9, 566–571.
  45. Chandrasekaran, M.; Kannathasan, K.; Venkatesalu, V. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Z. Für Naturforsch. C J. Biosci. 2008, 63, 331–336.
  46. Trapp, M.; Kai, M.; Mithofer, A.; Rodrigues, E. Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 2015, 110, 72–82.
  47. Sundar, R.D.V.; Segaran, G.; Shankar, S.; Settu, S.; Ravi, L. Bioactivity of Phoenix dactylifera seed and its phytochemical analysis. Int. J. Green Pharm. 2017, 11, S292–S297.
  48. Rashid, M.U.; Alamzeb, M.; Ali, S.; Khan, A.; Igoli, J.; Ferro, V.; Gray, A.; Khan, M. A new ceramide along with eight known compounds from the roots of Artemisia incisa Pamp. Rec. Nat. Prod. 2015, 9, 297–304.
  49. Allaoua, Z.; Benkhaled, M.; Dibi, A.; Long, C.; Aberkane, M.C.; Bouzidi, S.; Kassah-Laouar, A.; Haba, H. Chemical composition, antioxidant and antibacterial properties of Pteranthus dichotomus from Algerian Sahara. Nat. Prod. Res. 2016, 30, 700–704.
  50. Tang, J.; Meng, X.; Liu, H.; Zhao, J.; Zhou, L.; Qiu, M.; Zhang, X.; Yu, Z.; Yang, F. Antimicrobial activity of sphingolipids isolated from the stems of cucumber (Cucumis sativus L.). Molecules 2010, 15, 9288–9297.
  51. Agoramoorthy, G.; Chandrasekaran, M.; Venkatesalu, V.; Hsu, M.J. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz. J. Microbiol. 2007, 38, 739–742.
  52. Abubakar, M.N.; Majinda, R.R.T. GC-MS Analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis. Medicines 2016, 3, 3.
  53. Keroletswe, N.; Majinda, R.R.T.; Masesane, I.B. A new 3-prenyl-2-flavene and other extractives from Baphia massaiensis and their antimicrobial activities. Nat. Prod. Commun. 2018, 13, 435–438.
  54. Basa’ar, O.; Fatema, S.; Alrabie, A.; Mohsin, M.; Farooqui, M. Supercritical carbon dioxide extraction of Triognella foenum graecum Linn seeds: Determination of bioactive compounds and pharmacological analysis. Asian Pac. J. Trop. Biomed. 2017, 7, 1085–1091.
  55. Semwal, P.; Painuli, S.; Badoni, H.; Bacheti, R.K. Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A. Camus from Uttarakhand Himalaya. Clin. Phytosci. 2018, 4, 30.
  56. Kannathasan, K.; Senthilkumar, A.; Venkatesalu, V.; Chandrasekaran, M. Larvicidal activity of fatty acid methyl esters of Vitex species against Culex quinquefasciatus. Parasitol. Res. 2008, 103, 999–1001.
  57. Sanusi, S.B.; Bakar, M.A.; Mohamed, M.; Sabran, S.F.; Azizul, I. Antibacterial Activity and Phytochemical Analysis of Kembang semangkok (Scaphium macropodum) Stem Bark. In IOP Conference Series: Earth and Environmental Science, Proceedings of International Conference on Biodiversity; Takzim, J.D., Ed.; IOP Publishing: Bristol, UK, 2018; p. 12043.
  58. Wong, K.; Ali, D.; Boey, P. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat. Prod. Res. 2012, 26, 609–618.
  59. Bharitkar, Y.P.; Bathini, S.; Ojha, D.; Ghosh, S.; Mukherjee, H.; Kuotsu, K.; Chattopadhyay, D.; Mondal, N.B. Antibacterial and antiviral evaluation of sulfonoquinovosyldiacylglyceride: A glycolipid isolated from Azadirachta indica leaves. Lett. Appl. Microbiol. 2014, 58, 184–189.
  60. Ash, A.; Bharitkar, Y.; Murmu, S.; Hazra, A.; Ravichandiran, V.; Kar, P.; Mondal, N. Ultrastructural changes in Raillietina (Platyhelminthes: Cestoda), exposed to sulfonoquinovosyldiacylglyceride (SQDG), isolated from Neem (Azadirachta indica). Nat. Prod. Res. 2017, 31, 2445–2449.
  61. Poumale, H.; Djoumessi, A.; Ngameni, B.; Sandjo, L.; Ngadjui, B.; Shiono, Y. A new ceramide isolated from Ficus lutea Vahl (Moraceae). Acta Chim. Slov. 2011, 58, 81–86.
  62. Khedr, A.; Ibrahim, S.; Mohamed, G.; Ross, S.; Yamada, K. Panduramides A-D, new ceramides from Ficus pandurata fruits. Phytochem. Lett. 2018, 23, 100–105.
  63. Wyatt, R.; Hodges, L.; Kalafatis, N.; Wright, P.; Wynne, P.; Macrides, T. Phytochemical analysis and biological screening of leaf and twig extracts from Kunzea ericoides. Phytother. Res. 2005, 19, 963–970.
  64. Li, X.C.; Jacob, M.R.; ElSohly, H.N.; Nagle, D.G.; Smillie, T.J.; Walker, L.A.; Clark, A.M. Acetylenic acids inhibiting azole-resistant Candida albicans from Pentagonia gigantifolia. J. Nat. Prod. 2003, 66, 1132–1135.
  65. Nguyen, H.; Ho, D.; Vo, H.; Le, A.; Nguyen, H.; Kodama, T.; Ito, T.; Morita, H.; Raal, A. Antibacterial activities of chemical constituents from the aerial parts of Hedyotis pilulifera. Pharm. Biol. 2017, 55, 787–791.
  66. Singh, G.; Kumar, P.; Jindal, A. Antibacterial potential of sterols of some medicinal plants. Int. J. Pharm. Pharm. Sci. 2012, 43, 159–3162.
  67. Wikaningtyas, P.; Sukandar, E.Y. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pac. J. Trop. Biomed. 2016, 6, 16–19.
  68. Sasmakov, S.; Gazizov, F.; Putieva, Z.; Wende, K.; Alresly, Z.; Lindequist, U. Neutral lipids, phospholipids, and biological activity of extracts from Zygophyllum oxianum. Chem. Nat. Compd. 2012, 48, 11–15.
  69. Chatterjee, R.; Singh, O.; Pachuau, L.; Malik, S.P.; Paul, M.; Bhadra, K.; Paul, S.; Kumar, G.S.; Mondal, N.B.; Banerjee, S. Identification of a sulfonoquinovosyldiacylglyceride from Azadirachta indica and studies on its cytotoxic activity and DNA binding properties. Bioorg. Med. Chem. Lett. 2010, 20, 6699–6702.
  70. Yogesh, P.; Bhattacharya, S.; Das, T.; Roy, M.; Besra, S.; Gomes, A.; Mondal, N.; Banerjee, S. Anti-leukemic activity of sulfonoquinovosyldiacylglyceride (SQDG): A constituent of Azadirachta indica leaves. Med. Chem. Res. 2013, 22, 22–27.
  71. Bachere, E.; Gueguen, Y.; Gonzalez, M.; de Lorgeril, J.; Garnier, J.; Romestand, B. Insights into the anti-microbial defense of marine invertebrates: The penaeid shrimps and the oyster Crassostrea gigas. Immunol. Rev. 2004, 198, 149–168.
  72. Bhadury, P.; Wright, P. Exploitation of marine algae: Biogenic compounds for potential antifouling applications. Planta 2004, 219, 561–578.
  73. Mayer, A.; Rodriguez, A.; Taglialatela-Scafati, O.; Fusetani, N. Marine Pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 273.
  74. Desbois, A.P.; Lawlor, K.C. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs 2013, 11, 4544–4557.
  75. El Baz, F.; El Baroty, G.; Abd El Baky, H.; Abd El-Salam, O.; Ibrahim, E. Structural characterization and biological activity of sulfolipids from selected marine algae. Grasas Aceites 2013, 64, 561–571.
  76. Freile-Pelegrin, Y.; Morales, J. Antibacterial activity in marine algae from the coast of Yucatan, Mexico. Bot. Mar. 2004, 47, 140–146.
  77. Gerasimenko, N.; Chaykina, E.; Busarova, N.; Anisimov, M. Antimicrobic and hemolytic activity of low-molecular metabolits of brown seaweed Laminaria cichorioides (Miyabe). Appl. Biochem. Microbiol. 2010, 46, 426–430.
  78. Val, A.; Platas, G.; Basilio, A.; Cabello, A.; Gorrochategui, J.; Suay, I.; Vicente, F.; Portillo, E.; Río, M.; Reina, G.; et al. Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int. Microbiol. 2001, 4, 35–40.
  79. Wang, H.; Li, Y.L.; Shen, W.Z.; Rui, W.; Ma, X.J.; Cen, Y.Z. Antiviral activity of a sulfoquinovosyldiacylglycerol (SQDG) compound isolated from the green alga Caulerpa racemosa. Bot. Mar. 2007, 50, 185–190.
  80. Yap, W.F.; Tay, V.; Tan, S.H.; Yow, Y.Y.; Chew, J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics 2019, 8, 152.
  81. Mattos, B.; Romanos, M.; de Souza, L.; Sassaki, G.; Barreto-Bergter, E. Glycolipids from macroalgae: Potential biomolecules for marine biotechnology? Rev. Bras. Farmacogn. 2011, 21, 244–247.
  82. Paul, V.; Fenical, W. Chemical defense in tropical green algae, order Caulerpales. Mar. Ecol. Prog. Ser. 1986, 34, 157–169.
  83. Stabili, L.; Acquaviva, M.; Angile, F.; Cavallo, R.; Cecere, E.; Del Coco, L.; Fanizzi, F.; Gerardi, C.; Narracci, M.; Petrocelli, A. Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Mar. Drugs 2019, 17, 313.
  84. Marín-Álvarez, A.; Murillo-Álvarez, J.I.; Muñoz-Ochoa, M.; Molina-Salinas, G.M. Chemical constituents and bioactivity of Codium amplivesiculatum Setchell & N. L. Gardener (Chlorophyta; Bryopsidales). CICIMAR Oceán. 2013, 28, 1–6.
  85. Garg, H.; Sharma, M.; Bhakuni, D.; Pramanik, B.; Bose, A. An antiviral sphingosine derivative from the green alga Ulva fasciata. Tetrahedron Lett. 1992, 33, 1641–1644.
  86. Sharma, M.; Garg, H.; Chandra, K. Erythro-sphinga-4,8-dienine-N-palmitate—An antiviral agent from the green alga Ulva fasciata. Bot. Mar. 1996, 39, 213–215.
  87. El Baroty, G.S.; El-Baz, F.K.; Abd-Elmoein, I.; Abd El Baky Hanaa, H.; Ali, M.M.; Ibrahim, E.A. Evaluation of glycolipids of some egyptian marine algae as a source of bioactive substances. Int. Res. J. Pharm. 2011, 2, 165–174.
  88. Al-Fadhli, A.; Wahidulla, S.; D’Souza, L. Glycolipids from the red alga Chondria armata (Kutz.) Okamura. Glycobiology 2006, 16, 902–915.
  89. Mendes, M.; Pereira, R.; Pinto, I.S.; Carvalho, A.P.; Gomes, A.M. Antimicrobial activity and lipid profile of seaweed extracts from the North Portuguese Coast. Int. Food Res. J. 2013, 20, 3337–3345.
  90. Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G.S.; Shakir, C.; Lipton, A.P. Antimicrobial potential of marine organisms collected from the southwest coast of India against multiresistant human and shrimp pathogens. Sci. Mar. 2010, 74, 287–296.
  91. Ohta, K.; Mizushina, Y.; Hirata, N.; Takemura, M.; Sugawara, F.; Matsukage, A.; Yoshida, S.; Sakaguchi, K. Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem. Pharm. Bull. 1998, 46, 684–686.
  92. Capillo, G.; Savoca, S.; Costa, R.; Sanfilippo, M.; Rizzo, C.; Lo Giudice, A.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Spanò, N.; et al. New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar. Drugs 2018, 16, 492.
  93. Stabili, L.; Acquaviva, M.I.; Biandolino, F.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Narracci, M.; Petrocelli, A.; Cecere, E. The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? New Biotechnol. 2012, 29, 443–450.
  94. Shanab, S.M. Antioxidant and antibiotic activities of some seaweeds (Egyptian isolates). Int. J. Agric. Biol. 2007, 9, 220–225.
  95. Feng, M.; Yu, X.; Yang, P.; Yang, H.; Lin, K.; Mao, S. Two new antifungal polyunsaturated fatty acid ethyl esters from the red alga Laurencia okamurai. Chem. Nat. Compd. 2015, 51, 418–422.
  96. Vairappan, C.S.; Suzuki, M.; Ishii, T.; Okino, T.; Abe, T.; Masuda, M. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 2008, 69, 2490–2494.
  97. De Souza, L.; Sassaki, G.; Romanos, M.; Barreto-Bergter, E. Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Mar. Drugs 2012, 10, 918–931.
  98. García-Bueno, N.; Dumay, J.; Guerin, T.; Turpin, V.; Paillard, C.; Stiger-Pouvreau, V.; Pouchus, Y.-F.; Marín-Atucha, A.A.; Decottignes, P.; Fleurence, J. Seasonal variation in the antivibrio activity of two organic extracts from two red seaweed: Palmaria palmata and the introduced Grateloupia turuturu against the abalone pathogen Vibrio harveyi. Aquat. Living Resour. 2015, 28, 81–87.
  99. Latorre, N.; Castaneda, F.; Meynard, A.; Rivas, J.; Contreras-Porcia, L. First approach of characterization of bioactive compound in Pyropia orbicularis during the daily tidal cycle. Lat. Am. J. Aquat. Res. 2019, 47, 826–840.
  100. Etahiri, S.; Bultel-Ponce, V.; Caux, C.; Guyot, M. New bromoditerpenes from the red alga Sphaerococcus coronopifolius. J. Nat. Prod. 2001, 64, 1024–1027.
  101. Amiguet, V.; Jewell, L.; Mao, H.; Sharma, M.; Hudson, J.; Durst, T.; Allard, M.; Rochefort, G.; Arnason, J. Antibacterial properties of a glycolipid-rich extract and active principle from Nunavik collections of the macroalgae Fucus evanescens C. Agardh (Fucaceae). Can. J. Microbiol. 2011, 57, 745–749.
  102. Plaza, M.; Santoyo, S.; Jaime, L.; Reina, G.; Herrero, M.; Senoráns, F.; Ibáñez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal. 2010, 51, 450–455.
  103. El Shafay, S.M.; Ali, S.S.; El-Sheekh, M.M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt. J. Aquat. Res. 2016, 42, 65–74.
  104. Gerasimenko, N.I.; Martyias, E.A.; Logvinov, S.V.; Busarova, N.G. Biological activity of lipids and photosynthetic pigments of Sargassum pallidum C. Agardh. Prikl. Biokhim. Mikrobiol. 2014, 50, 85–94.
  105. Plouguerné, E.; de Souza, L.M.; Sassaki, G.L.; Cavalcanti, J.F.; Villela Romanos, M.T.; da Gama, B.A.; Pereira, R.C.; Barreto-Bergter, E. Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Mar. Drugs 2013, 11, 4628–4640.
  106. Arunkumar, K.; Selvapalam, N.; Rengasamy, R. The antibacterial compound sulphoglycerolipid 1-0 palmitoyl-3-0(6’-sulpho-alpha-quinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Bot. Mar. 2005, 48, 441–445.
  107. Mendiola, J.; Torres, C.; Tore, A.; Martín-Álvarez, P.; Santoyo, S.; Arredondo, B.; Senoráns, F.; Cifuentes, A.; Ibáñez, E. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. Eur. Food Res. Technol. 2007, 224, 505–510.
  108. Ohta, S.; Chang, T.; Kawashima, A.; Nagate, T.; Murase, M.; Nakanishi, H.; Miyata, H.; Kondo, M. Anti methicillin-resistant Staphylococcus aureus (MRSA) activity by linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bull. Environ. Contam. Toxicol. 1994, 52, 673–680.
  109. Herrero, M.; Ibáñez, E.; Cifuentes, A.; Reglero, G.; Santoyo, S. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J. Food Prot. 2006, 69, 2471–2477.
  110. Findlay, J.A.; Patil, A.D. Antibacterial constituents of the diatom Navicula delognei. J. Nat. Prod. 1984, 47, 815–818.
  111. Desbois, A.P.; Lebl, T.; Yan, L.; Smith, V.J. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 2008, 81, 755–764.
  112. Desbois, A.; Mearns-Spragg, A.; Smith, V. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 2009, 11, 45–52.
  113. Carballeira, N.; Reyes, E.; Sostre, A.; Rodríguez, A.; Rodríguez, J.; González, F. Identification of the novel antimicrobial fatty acid (5Z,9Z)-14-methyl-5,9-pentadecadienoic acid in Eunicea succinea. J. Nat. Prod. 1997, 60, 502–504.
  114. Taniguchi, M.; Uchio, Y.; Yasumoto, K.; Kusumi, T.; Ooi, T. Brominated unsaturated fatty acids from marine sponge collected in Papua New Guinea. Chem. Pharm. Bull. 2008, 56, 378–382.
  115. Dmitrenok, A.; Radhika, P.; Anjaneyulu, V.; Subrahmanyam, S.; Rao, P.; Dmitrenok, P.; Boguslavsky, V. New lipids from the soft corals of the Andaman Islands. Russ. Chem. Bull. 2003, 52, 1868–1872.
  116. Angulo-Preckler, C.; Spurkland, T.; Avila, C.; Iken, K. Antimicrobial activity of selected benthic Arctic invertebrates. Polar Biol. 2015, 38, 1941–1948.
  117. Lauritano, C.; Martínez, K.A.; Battaglia, P.; Granata, A.; de la Cruz, M.; Cautain, B.; Martín, J.; Reyes, F.; Ianora, A.; Guglielmo, L. First evidence of anticancer and antimicrobial activity in Mediterranean mesopelagic species. Sci. Rep. 2020, 10, 1–8.
  118. Barnathan, G. Non-methylene-interrupted fatty acids from marine invertebrates: Occurrence, characterization and biological properties. Biochimie 2009, 91, 671–678.
  119. Ely, R.; Supriya, T.; Naik, C.G. Antimicrobial activity of marine organisms collected off the coast of South East India. J. Exp. Mar. Bio. Ecol. 2004, 309, 121–127.
  120. Chan-Higuera, J.E.; Carbonell-Barrachina, A.A.; Cárdenas-Lopez, J.L.; Kačániová, M.; Burgos-Hernández, A.; Ezquerra-Brauer, J.M. Jumbo squid (Dosidicus gigas) skin pigments: Chemical analysis and evaluation of antimicrobial and antimutagenic potential. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 349–353.
  121. Seleghim, M.H.R.; Lira, S.P.; Kossuga, M.H.; Batista, T.; Berlinck, R.G.S.; Hajdu, E.; Muricy, G.; da Rocha, R.M.; do Nascimento, G.G.F.; Silva, M.; et al. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Rev. Bras. Farmacogn. 2007, 17, 287–318.
  122. Lin, K.; Yang, P.; Yang, H.; Liu, A.-H.; Yao, L.-G.; Guo, Y.-W.; Mao, S.-C. Lysophospholipids from the guangxi sponge Spirastrella purpurea. Lipids 2015, 50, 697–703.
  123. Linington, R.G.; Robertson, M.; Gauthier, A.; Finlay, B.B.; van Soes, R.; Andersen, R.J. Caminoside A, an antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org. Lett. 2002, 4, 4089–4092.
  124. Ravichandran, S.; Wahidulla, S.; D’Souza, L.; Rameshkumar, G. Antimicrobial lipids from the hemolymph of brachyuran crabs. Appl. Biochem. Biotechnol. 2010, 162, 1039–1051.
  125. Haug, T.; Kjuul, A.K.; Stensvåg, K.; Sandsdalen, E.; Styrvold, O.B. Antibacterial activity in four marine crustacean decapods. Fish. Shellfish Immunol. 2002, 12, 371–385.
  126. Schmitt, P.; Wilmes, M.; Pugnière, M.; Aumelas, A.; Bachère, E.; Sahl, H.-G.; Schneider, T.; Destoumieux-Garzón, D. Insight into invertebrate defensin mechanism of action oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J. Biol. Chem. 2010, 285, 29208–29216.
  127. Mohanraju, R.; Marri, D.B.; Karthick, P.; Narayana, S.; Murthy, K.N.; Ramesh, C. Antibacterial activity of certain cephalopods from Andamans, India. Int J. Pharm Biol Sci. 2013, 32, 450–455.
  128. Ebada, S.S.; Lin, W.; Proksch, P. Bioactive sesterterpenes and triterpenes from marine sponges: Occurrence and pharmacological significance. Mar. Drugs 2010, 8, 313–346.
  129. Cheng, L.; Jin, X.-K.; Li, W.-W.; Li, S.; Guo, X.-N.; Wang, J.; Gong, Y.-N.; He, L.; Wang, Q. Fatty acid binding proteins FABP9 and FABP10 participate in antibacterial responses in Chinese mitten crab, Eriocheir sinensis. PLoS ONE 2013, 8.
  130. Kelly, J.R.; Scheibling, R.E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 2012, 446, 1–22.
  131. Brinkmann, C.M.; Marker, A.; Kurtboke, D.I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 2017, 9, 40.
  132. Laport, M.S.; Santos, O.C.S.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105.
  133. Müller, W.E.G.; Blumbach, B.; Müller, I.M. Evolution of the innate and adaptive immune systems: Relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation 1999, 68, 1215–1227.
  134. Müller, W.E.G.; Klemt, M.; Thakur, N.L.; Schröder, H.C.; Aiello, A.; D’esposito, M.; Menna, M.; Fattorusso, E. Molecular/chemical ecology in sponges: Evidence for an adaptive antibacterial response in Suberites domuncula. Mar. Biol. 2004, 144, 19–29.
  135. Tsukamoto, S.; Matsunaga, S.; Fusetani, N.; van Soest, R.W.M. Acanthosterol sulfates A-J: Ten new antifungal steroidal sulfates from a marine sponge Acanthodendrilla sp. J. Nat. Prod. 1998, 61, 1374–1378.
  136. Elkhayat, E.; Edrada, R.; Ebel, R.; Wray, V.; van Soest, R.; Wiryowidagdo, S.; Mohamed, M.; Müller, W.E.G.; Proksch, P. New luffariellolide derivatives from the Indonesian sponge Acanthodendrilla sp. J. Nat. Prod. 2004, 67, 1809–1817.
  137. Tasdemir, D.; Topaloglu, B.; Perozzo, R.; Brun, R.; O’Neill, R.; Carballeira, N.M.; Zhang, X.; Tonge, P.J.; Linden, A.; Ruedi, P. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 2007, 15, 6834–6845.
  138. Linington, R.G.; Robertson, M.; Gauthier, A.; Finlay, B.B.; MacMillan, J.B.; Molinski, T.F.; van Soest, R.; Andersen, R.J. Caminosides B-D, antimicrobial glycolipids isolated from the marine sponge Caminus sphaeroconia. J. Nat. Prod. 2006, 69, 173–177.
  139. Qiu, Y.; Wang, X.M. A new sesquiterpenoid hydroquinone from the marine sponge Dysidea arenaria. Molecules 2008, 13, 1275–1281.
  140. Lee, D.; Shin, J.; Yoon, K.-M.; Kim, T.-I.; Lee, S.-H.; Lee, H.-S.; Oh, K.-B. Inhibition of Candida albicans isocitrate lyase activity by sesterterpene sulfates from the tropical sponge Dysidea sp. Bioorg. Med. Chem. Lett. 2008, 18, 5377–5380.
  141. Carmely, S.; Roll, M.; Loya, Y.; Kashman, Y. The structure of eryloside A, a new antitumor and antifungal 4-methylated steroidal glycoside from the sponge Erylus lendenfeldi. J. Nat. Prod. 1989, 52, 167–170.
  142. Okada, Y.; Matsunaga, S.; van Soest, R.W.M.; Fusetani, N. Sokodosides, steroid glycosides with an isopropyl side chain, from the marine sponge Erylus placenta. J. Org. Chem. 2006, 71, 4884–4888.
  143. Boonlarppradab, C.; Faulkner, D.J. Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J. Nat. Prod. 2007, 70, 846–848.
  144. Zhang, H.; Khalil, Z.G.; Capon, R.J. Fascioquinols A–F: Bioactive meroterpenes from a deep-water southern Australian marine sponge, Fasciospongia sp. Tetrahedron 2011, 67, 2591–2595.
  145. Ishiyama, H.; Hashimoto, A.; Fromont, J.; Hoshino, Y.; Mikami, Y.; Kobayashi, J. Halichonadins A–D, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron 2005, 61, 1101–1105.
  146. Ishiyama, H.; Kozawa, S.; Aoyama, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. Halichonadin F and the Cu(I) complex of halichonadin C from the sponge Halichondria sp. J. Nat. Prod. 2008, 71, 1301–1303.
  147. Viegelmann, C.; Parker, J.; Ooi, T.; Clements, C.; Abbott, G.; Young, L.; Kennedy, J.; Dobson, A.D.W.; Edrada-Ebel, R. Isolation and identification of antitrypanosomal and antimycobacterial active steroids from the sponge Haliclona simulans. Mar. Drugs 2014, 12, 2937–2952.
  148. Kobayashi, J.; Yuasa, K.; Kobayashi, T.; Sasaki, T.; Tsuda, M. Jaspiferals A ~ G, new cytotoxic isomalabaricane-type nortriterpenoids from Okinawan marine sponge Jaspis stellifera. Tetrahedron 1996, 52, 5745–5750.
  149. Butler, M.S.; Capon, R.J. The luffarins (AZ), novel terpenes from an Australian marine sponge, Luffariella geometrica. Aust. J. Chem. 1992, 45, 1705–1743.
  150. De Silva, E.D.; Scheuer, P.J. Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variabilis (Polejaeff). Tetrahedron Lett. 1980, 21, 1611–1614.
  151. De Silva, E.D.; Scheuer, P.J. Three new sesterterpenoid antibiotics from the marine sponge Luffariella variabilis (Polejaff). Tetrahedron Lett. 1981, 22, 3147–3150.
  152. Dai, H.-F.; Edrada, R.A.; Ebel, R.; Nimtz, M.; Wray, V.; Proksch, P. Norlanostane triterpenoidal saponins from the marine sponge Melophlus sarassinorum. J. Nat. Prod. 2005, 68, 1231–1237.
  153. Matsunaga, S.; Okada, Y.; Fusetani, N.; van Soest, R. An antimicrobial C14 acetylenic acid from a marine sponge Oceanapia species. J. Nat. Prod. 2000, 63, 690–691.
  154. Tianero, M.D.B.; Hanif, N.; de Voogd, N.J.; van Soest, R.W.M.; Tanaka, J. A new antimicrobial fatty acid from the calcareous sponge Paragrantia cf. waguensis. Chem. Biodivers. 2009, 6, 1374–1377.
  155. Sun, H.H.; Gross, S.S.; Gunasekera, M.; Koehn, F.E. Weinbersterol disulfate A and B, antiviral steroid sulfates from the sponge Petrosia weinbergi. Tetrahedron 1991, 47, 1185–1190.
  156. Ryu, G.; Choi, B.W.; Lee, B.H.; Hwang, K.-H.; Lee, U.C.; Jeong, D.S.; Lee, N.H. Wondosterols AC, three steroidal glycosides from a Korean marine two-sponge association. Tetrahedron 1999, 55, 13171–13178.
  157. Ross, S.A.; Weete, J.D.; Schinazi, R.F.; Wirtz, S.S.; Tharnish, P.; Scheuer, P.J.; Hamann, M.T. Mololipids, a new series of anti-HIV bromotyramine-derived compounds from a sponge of the order Verongida. J. Nat. Prod. 2000, 63, 501–503.
  158. Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R. Novel HIV-inhibitory halistanol sulfates FH from a marine sponge, Pseudoaxinissa digitata. J. Nat. Prod. 1994, 57, 164–167.
  159. Keffer, J.L.; Plaza, A.; Bewley, C.A. Motualevic acids A-F, antimicrobial acids from the sponge Siliquariaspongia sp. Org. Lett. 2009, 11, 1087–1090.
  160. Sullivan, B.; Djura, P.; Mcintyre, D.E.; Faulkner, D.J. Antimicrobial constituents of the sponge Siphonodictyon coralliphagum. Tetrahedron 1981, 37, 979–982.
  161. Takahashi, Y.; Kubota, T.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J. Nakijiquinones G-I, new sesquiterpenoid quinones from marine sponge. Bioorg. Med. Chem. 2008, 16, 7561–7564.
  162. DiGirolamo, J.A.; Li, X.-C.; Jacob, M.R.; Clark, A.M.; Ferreira, D. Reversal of fluconazole resistance by sulfated sterols from the marine sponge Topsentia sp. J. Nat. Prod. 2009, 72, 1524–1528.
  163. Appleton, D.R.; Chuen, C.S.; Berridge, M.V.; Webb, V.L.; Copp, B.R. Rossinones A and B, biologically active meroterpenoids from the Antarctic Ascidian, Aplidium species. J. Org. Chem. 2009, 74, 9195–9198.
  164. Vanisree, M.; Subbaraju, G. Alcyonacean metabolites VIII-antibacterial metabolites from Labophytum crassum of the Indian Ocean. Asian J. Chem. 2002, 14, 957–960.
  165. Ata, A.; Win, H.; Holt, D.; Holloway, P.; Segstro, E.; Jayatilake, G. New antibacterial diterpenes from Pseudopterogorgia elisabethae. Helv. Chim. Acta 2004, 87, 1090–1098.
  166. Ibrahim, H.A.H. Antibacterial carotenoids of three Holothuria species in Hurghada, Egypt. Egypt. J. Aquat. Res. 2012, 38, 185–194.
  167. Karthikeyan, S.C.; Velmurugan, S.; Donio, M.B.S.; Michaelbabu, M.; Citarasu, T. Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 332.
More
This entry is offline, you can click here to edit this entry!
ScholarVision Creations