Co-citation of references refers to the phenomenon in which two or more references are cited by the same document. The analysis of literature co-citation in CiteSpace reveals the theoretical knowledge foundation of relevant research by analyzing the high frequency of co-citation literature and the knowledge structure of a research field is revealed by analyzing the key nodes and clusters in the co-citation network [
127]. The schematic of literature co-citation was obtained as shown in
Figure 2. The nodes represent the cited literature, whose sizes denote the citation frequency. The color of the nodes depicts the citation time corresponding with the time bar above, and the labels on the nodes are the first author and publication year of the article.
The co-citation network in the urban floods field was composed of 978 nodes and 2725 connections. Fifteen key articles with important academic influence, corresponding to the largest 15 nodes in Figure 2, were selected in this study. As can be seen, only one article was published earlier than 2010, and had no direct connection with the other 14 articles, while the connection between the latter was very strong. Among the 15 articles, there were 9 reviews or summaries, indicating that reviews are relatively more often cited due to their nature in all article types.
Fletcher Tim et al. published “SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage” in
Urban Water Journal in 2015, which ranks first in citation frequency [
128]. As of 8 March 2021, this article has been co-cited 88 times. In this article, the history, application, and underlying principles of terms used in urban drainage were documented, such as low impact development (LID), water sensitive urban design (WSUD), and best management practices (BMPs), making it a summary classic. What ranks second is a review, named “Urban flood impact assessment: A state-of-the-art review”, published in 2015 by Hammond MJ et al., revealing the tangible and intangible damage of urban floods [
129]. Burns Matthew et al. [
130] systematically discussed the hydrologic shortcomings of conventional urban stormwater management by contrasting the hydrologic effects of two conventional approaches, namely drainage-efficiency-focused and pollutant-load-reduction-focused, and proposed a new approach, ranking third. Teng J. et al. [
131] summarized the advantages and limitations of the flood inundation model. The article entitled “Performance and implementation of low impact development—A review” was published by Eckart Kyle et al. in
Science of the Total Environment in 2017 [
132]. This article provides a summary of the knowledge of low impact development (LID), as well as the current state of research. Palla Anna and Ilaria Gnecco [
133] used a hydrologic model to confirm the effectiveness of LID solutions in several scenarios. Qin Huapeng et al. [
134] analyzed the effects of three LID techniques, namely swales, permeable pavements, and green roofs, by simulation experiment. In 2013, the state of art regarding stormwater management was summarized by Fletcher Tim et al. [
113], whose cited position ranks tenth, making it the only article that ranks not only in the top 10 of the total number of citations, but also in the top of co-cited articles. Ahiablame Laurent et al. [
135] discussed and evaluated the effectiveness of low impact development practices by field and laboratory studies. In addition, Hunter et al. [
136] compared the ability of six two-dimensional (2D) hydraulic models to simulate surface flows in a densely urbanized area through the simulation of a happened flood event.