Advanced Hydrogels as Wound Dressings: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: ,
  • tissue engineering,
  • skin substitutes,
  • sprayable smart hydrogel
  • in situ forming hydrogels
  • wound dressings with integrated sensors,
  • regenerative medicine

https://www.mdpi.com/2218-273X/10/8/1169

Abstract: Skin is the largest organ of the human body, protecting it against the external environment.
Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need
to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue
engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the
candidates with most potential to mimic the native skin microenvironment, due to their porous and
hydrated molecular structure. They can be applied as a permanent or temporary dressing for di erent
wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on
the material used for their fabrication, hydrogels can be subdivided into two main groups—natural
and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain
“in situ” hybrid hydrogels, showing superior properties and tailored functionality. In addition,
di erent sensors can be embedded in hydrogel wound dressings to provide real-time information
about the wound environment. This review focuses on the most recent developments in the field
of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis,
fabrication, and biomedical application of novel “smart” hydrogels.

1. Introduction

2. Skin Structure

3. Skin Wound Healing

4. Types of Wounds

5. Applications of Hydrogels for Wound Healing

5.1. Sprayable in situ forming Hydrogels for Wound Applications

5.1.1. Methacrylated Gelatin

5.1.2. Methacrylated Kappa-Carrageenan

5.1.3. Chitosan

5.2. Acellular Hydrogel-based Wound dressings

5.2.1. Commercial Dermal Substitutes Based on Natural Hydrogels

5.2.2. Commercial Dermal Substitutes Based on Synthetic Hydrogels

5.3. Hydrogel Dressings with Integrated Sensors

6. Conclusions and Future Direction

References

1. Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in skin
regeneration using tissue engineering. Int. J. Mol. Sci. 2017, 18, 789. [CrossRef] [PubMed]
2. Herndon, D.N.; Barrow, R.E.; Rutan, R.L.; Rutan, T.C.; Desai, M.H.; Abston, S. A comparison of conservative
versus early excision. Therapies in severely burned patients. Ann. Surg. 1989, 209, 547. [CrossRef] [PubMed]
3. Schiestl, C.; Stiefel, D.; Meuli, M. Giant naevus, giant excision, eleg (i) ant closure? Reconstructive surgery
with Integra Artificial Skin® to treat giant congenital melanocytic naevi in children. J. Plast. Reconst.
Aesthet. Surg. 2010, 63, 610–615. [CrossRef] [PubMed]
4. Schiestl, C.; Neuhaus, K.; Biedermann, T.; Böttcher-Haberzeth, S.; Reichmann, E.; Meuli, M. Novel treatment
for massive lower extremity avulsion injuries in children: Slow, but e ective with good cosmesis. Eur. J.
Pediatr. Surg. 2011, 21, 106–110. [CrossRef] [PubMed]
5. Böttcher-Haberzeth, S.; Kapoor, S.; Meuli, M.; Neuhaus, K.; Biedermann, T.; Reichmann, E.; Schiestl, C.
Osmotic expanders in children: No filling–no control–no problem? Eur. J. Pediatr. Surg. 2011, 21, 163–167.
[CrossRef]
6. Barbour, J.R.; Schweppe, M.; Seung-Jun, O. Lower-extremity burn reconstruction in the child. J. Carnio. Surg.
2008, 19, 976–988. [CrossRef]
7. Berman, B.; Viera, M.H.; Amini, S.; Huo, R.; Jones, I.S. Prevention and management of hypertrophic scars
and keloids after burns in children. J. Carnio. Surg. 2008, 19, 989–1006. [CrossRef]
8. Klar, A.S.; Böttcher-Haberzeth, S.; Biedermann, T.; Schiestl, C.; Reichmann, E.; Meuli, M. Analysis of blood
and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of di erent
pigmentation. Pediatr. Surg. Int. 2014, 30, 223–231. [CrossRef]
9. Klar, A.S.; Güven, S.; Biedermann, T.; Luginbühl, J.; Böttcher-Haberzeth, S.; Meuli-Simmen, C.; Meuli, M.;
Martin, I.; Scherberich, A.; Reichmann, E. Tissue-engineered dermo-epidermal skin grafts prevascularized
with adipose-derived cells. Biomaterials 2014, 35, 5065–5078. [CrossRef]
10. Klar, A.S.; Michalak-Mi´cka, K.; Biedermann, T.; Simmen-Meuli, C.; Reichmann, E.; Meuli, M.
Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin
substitutes in vivo. Pediatr. Surg. Int. 2018, 34, 129–135. [CrossRef]
11. Augustine, R.; Kalarikkal, N.; Thomas, S. Advancement of wound care from grafts to bioengineered smart
skin substitutes. Prog. Biomater. 2014, 3, 103–113. [CrossRef] [PubMed]
12. Halim, A.S.; Khoo, T.L.; Yussof, S.J.M. Biologic and synthetic skin substitutes: An overview. Indian J.
Plast. Surg. 2010, 43, S23–S28. [CrossRef]
13. Balakrishnan, B.; Mohanty, M.; Umashankar, P.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel
wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26, 6335–6342. [CrossRef]
[PubMed]
14. Holland, T.; Chaouk, H.; Asfaw, B.; Goodrich, S.; Hunter, A.; Francis, V. Spray hydrogel wound dressings.
Google Patents No. 09/960,449, 2002.
15. Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-hydrogel: A hybrid biomaterial system for localized
drug delivery. Ann. Biomed. Eng. 2016, 44, 2049–2061. [CrossRef] [PubMed]
16. Metcalfe, A.D.; Ferguson, M.W. Tissue engineering of replacement skin: The crossroads of biomaterials,
wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 2007, 4, 413–437.
[CrossRef]
17. Kolarsick, P.A.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurs. Assoc.
2011, 3, 203–213. [CrossRef]
18. Chu, D. Overview of Biology, Development, and Structure of Skin; Wol , K., Goldsmith, L.A., Katz, S.I.,
Gilchrest, B.A., Paller, A.S., Le ell, D.J., Eds.; McGraw-Hill: New York, NY, USA, 2008.
19. Standring, S. Gray’s Anatomy E-book: The Anatomical Basis of Clinical Practice; Elsevier Health Sciences:
Amsterdam, The Netherlands, 2015.
20. Aumailley, M.; Rousselle, P. Laminins of the dermo–epidermal junction. Matrix Biol. 1999, 18, 19–28.
[CrossRef]
21. Timpl, R.; Brown, J.C. Supramolecular assembly of basement membranes. Bioessays 1996, 18, 123–132.
[CrossRef]
Biomolecules 2020, 10, 1169 16 of 20
22. Fleischmajer, R.; Kühn, K.; Sato, Y.; MacDonald, E.D., II; Perlish, J.S.; Pan, T.-C.; Chu, M.-L.; Kishiro, Y.;
Oohashi, T.; Bernier, S.M. There is temporal and spatial expression of  1 (IV),  2 (IV),  5 (IV),  6 (IV)
collagen chains and  1 integrins during the development of the basal lamina in an “in vitro” skin model.
J. Investig. Dermatol. 1997, 109, 527–533. [CrossRef]
23. Smola, H.; Stark, H.-J.; Thiekötter, G.;Mirancea, N.; Krieg, T.; Fusenig, N.E. Dynamics of basement membrane
formation by keratinocyte–fibroblast interactions in organotypic skin culture. Exp. Cell. Res. 1998, 239,
399–410. [CrossRef]
24. Yamane, Y.; Yaoita, H.; Couchman, J.R. Basement membrane proteoglycans are of epithelial origin in
rodent skin. J. Invest. Dermatol. 1996, 106, 531–537. [CrossRef] [PubMed]
25. Rittié, L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal. 2016,
10, 103–120. [CrossRef] [PubMed]
26. Pereira, R.F.; Sousa, A.; Barrias, C.C.; Bayat, A.; Granja, P.L.; Bártolo, P.J. Advances in bioprinted cell-laden
hydrogels for skin tissue engineering. Biomanufacturing Rev. 2017, 2, 1. [CrossRef]
27. Wallig, M.A.; Bolon, B.; Haschek,W.M.; Rousseaux, C.G. Fundamentals of Toxicologic Pathology; Academic Press:
Cambridge, MA, USA, 2017.
28. Clayton, K.; Vallejo, A.F.; Davies, J.; Sirvent, S.; Polak, M.E. Langerhans cells—Programmed by the epidermis.
Front. Immunol. 2017, 8, 1676. [CrossRef]
29. Massella, D.; Argenziano, M.; Ferri, A.; Guan, J.; Giraud, S.; Cavalli, R.; Barresi, A.A.; Salaün, F. Bio-functional
textiles: Combining pharmaceutical nanocarriers with fibrous materials for innovative dermatological
therapies. Pharmaceutics 2019, 11, 403. [CrossRef]
30. Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound healing phases. StatPearls 2019. Available online:
https://europepmc.org/article/NBK/NBK470443 (accessed on 4 May 2020).
31. Gonzalez, A.C.d.O.; Costa, T.F.; Andrade, Z.D.A.; Medrado, A.R.A.P.Wound healing—A literature review.
An. Bras. Dermatol. 2016, 91, 614–620. [CrossRef]
32. Yun, S.-H.; Sim, E.-H.; Goh, R.-Y.; Park, J.-I.; Han, J.-Y. Platelet activation: The mechanisms and potential
biomarkers. Biomed Res. Int. 2016, 2016. [CrossRef]
33. Rasche, H. Haemostasis and thrombosis: An overview. Eur. Heart J. Suppl. 2001, 3, Q3–Q7. [CrossRef]
34. Versteeg, H.H.; Heemskerk, J.W.; Levi, M.; Reitsma, P.H. New fundamentals in hemostasis. Physiol. Rev.
2013, 93, 327–358. [CrossRef]
35. Rossaint, J.; Margraf, A.; Zarbock, A. Role of platelets in leukocyte recruitment and resolution of inflammation.
Front. Immunol. 2018, 9, 2712. [CrossRef] [PubMed]
36. Schultz, G.S.; Chin, G.A.; Moldawer, L.; Diegelmann, R.F. Principles of wound healing. In Mechanisms of
Vascular Disease: A Reference Book for Vascular Specialists [Internet]; University of Adelaide Press: Adelaide,
Australia, 2011.
37. Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. Tissue repair and the dynamics of the extracellular matrix.
Int. J. Biochem. Cell Biol. 2004, 36, 1031–1037. [CrossRef] [PubMed]
38. desJardins-Park, H.E.; Foster, D.S.; Longaker, M.T. Fibroblasts and wound healing: An update. Future Med.
2018. [CrossRef] [PubMed]
39. Bowden, L.; Byrne, H.; Maini, P.; Moulton, D. A morphoelastic model for dermal wound closure.
Biomech. Mod. Mechan. 2016, 15, 663–681. [CrossRef]
40. Lazarus, G.S.; Cooper, D.M.; Knighton, D.R.; Margolis, D.J.; Percoraro, R.E.; Rodeheaver, G.; Robson, M.C.
Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regener. 1994,
2, 165–170. [CrossRef]
41. Percival, N.J. Classification of wounds and their management. Surgery (Oxf.) 2002, 20, 114–117. [CrossRef]
42. Golinko, M.S.; Clark, S.; Rennert, R.; Flattau, A.; Boulton, A.J.; Brem, H. Wound emergencies:
The importance of assessment, documentation, and early treatment using a wound electronic medical
record. Ostomy/Wound Manag. 2009, 55, 54.
43. Moore, K.; McCallion, R.; Searle, R.J.; Stacey, M.C.; Harding, K.G. Prediction and monitoring the therapeutic
response of chronic dermal wounds. Int. Wound J. 2006, 3, 89–98. [CrossRef]
44. Uccioli, L.; Izzo, V.; Meloni, M.; Vainieri, E.; Ruotolo, V.; Giurato, L. Non-healing foot ulcers in diabetic
patients: General and local interfering conditions and management options with advanced wound dressings.
J. Wound Care 2015, 24, 35–42. [CrossRef]
Biomolecules 2020, 10, 1169 17 of 20
45. Nicodemus, G.D.; Bryant, S.J. Cell encapsulation in biodegradable hydrogels for tissue engineering
applications. Tissue Eng. Part B 2008, 14, 149–165. [CrossRef]
46. Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M.Wound healing dressings and drug delivery
systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923. [CrossRef] [PubMed]
47. Kumar, A.; Jaiswal, M. Design and in vitro investigation of nanocomposite hydrogel based in situ spray
dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J. Appl. Polym. Sci.
2016, 133. [CrossRef]
48. van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as sca olds for tissue engineering
applications: A review. Biomacromolecules 2011, 12, 1387–1408. [CrossRef] [PubMed]
49. Bilici, C.; Can, V.; Noöchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels
with self-healing ability of high mechanical strength. Macromol. 2016, 49, 7442–7449. [CrossRef]
50. Koehler, J.; Brandl, F.P.; Goepferich, A.M. Hydrogel wound dressings for bioactive treatment of acute and
chronic wounds. Eur. Polym. J. 2018, 100, 1–11. [CrossRef]
51. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery.
Drug Discov. Today 2002, 7, 569–579. [CrossRef]
52. Tavakoli, S.; Mokhtari, H.; Kharaziha, M.; Kermanpour, A.; Talebi, A.; Moshtaghian, J. A multifunctional
nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for
diabetic wounds. Mater. Sci. Eng. C 2020, 110837. [CrossRef]
53. Jones, A.; Vaughan, D. Hydrogel dressings in the management of a variety of wound types: A review.
J. Orthop. Nurs. 2005, 9, S1–S11. [CrossRef]
54. Dhivya, S.; Padma, V.V.; Santhini, E.Wound dressings–A review. BioMedicine 2015, 5. [CrossRef]
55. White, R. Wound dressings and other topical treatment modalities in bioburden control. J. Wound Care 2011,
20, 431–439. [CrossRef]
56. Pereira, R.F.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. Cell-instructive pectin hydrogels crosslinked via
thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater. 2018, 66, 282–293.
[CrossRef] [PubMed]
57. Mihaila, S.M.; Gaharwar, A.K.; Reis, R.L.; Marques, A.P.; Gomes, M.E.; Khademhosseini, A.
Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv. Healthc. Mater.
2013, 2, 895–907. [CrossRef] [PubMed]
58. Pereira, R.F.; Sousa, A.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. A single-component hydrogel bioink for
bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater. Horiz. 2018, 5, 1100–1111.
[CrossRef]
59. Chouhan, D.; Lohe, T.u.; Samudrala, P.K.; Mandal, B.B. In situ forming injectable silk fibroin hydrogel
promotes skin regeneration in full thickness burn wounds. Adv. Healthc. Mater. 2018, 7, 1801092. [CrossRef]
60. Tavakoli, S.; Kharaziha, M.; Kermanpur, A.; Mokhtari, H. Sprayable and injectable visible-light
Kappa-carrageenan hydrogel for in-situ soft tissue engineering. Int. J. Biol. Macromol. 2019, 138, 590–601.
[CrossRef] [PubMed]
61. Sun, M.; Sun, X.;Wang, Z.; Guo, S.; Yu, G.; Yang, H. Synthesis and properties of gelatin methacryloyl (GelMA)
hydrogels and their recent applications in load-bearing tissue. Polymers 2018, 10, 1290. [CrossRef]
62. Tondera, C.; Hauser, S.; Krüger-Genge, A.; Jung, F.; Ne e, A.T.; Lendlein, A.; Klopfleisch, R.; Steinbach, J.;
Neuber, C.; Pietzsch, J. Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from
multimodal preclinical imaging in immunocompetent nude mice. Theranostics 2016, 6, 2114. [CrossRef]
63. Neumann, P.; Zur, B.; Ehrenreich, Y. Gelatin-based sprayable foam as a skin substitute. J. Biomed. Mater. Res.
1981, 15, 9–18. [CrossRef]
64. Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z.Y.; Cui, W.; Annabi, N.; Ng, K.W.; Dokmeci, M.R.;
Ghaemmaghami, A.M.; Khademhosseini, A. Photocrosslinkable gelatin hydrogel for epidermal tissue
engineering. Adv. Healthc. Mater. 2016, 5, 108–118. [CrossRef]
65. Annabi, N.; Rana, D.; Sani, E.S.; Portillo-Lara, R.; Gi ord, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S.
Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing.
Biomaterials 2017, 139, 229–243. [CrossRef]
66. Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan based hydrogels for drug
delivery, tissue engineering and wound healing. Carbohydr. Polym. 2018, 198, 385–400. [CrossRef] [PubMed]
Biomolecules 2020, 10, 1169 18 of 20
67. Mokhtari, H.; Kharaziha, M.; Karimzadeh, F.; Tavakoli, S. An injectable mechanically robust hydrogel of
Kappa-carrageenan-dopamine functionalized graphene oxide for promoting cell growth. Carbohydr. Polym.
2019, 214, 234–249. [CrossRef] [PubMed]
68. Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and
pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1. [PubMed]
69. Peniche, C.; Argüelles-Monal, W.; Peniche, H.; Acosta, N. Chitosan: An attractive biocompatible polymer for
microencapsulation. Macromol. Biosci. 2003, 3, 511–520. [CrossRef]
70. Ong, S.-Y.;Wu, J.; Moochhala, S.M.; Tan, M.-H.; Lu, J. Development of a chitosan-based wound dressing with
improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332. [CrossRef] [PubMed]
71. Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a
biological adhesive. J. Biomed. Mater. Res. 2000, 49, 289–295. [CrossRef]
72. Gholizadeh, H.; Messerotti, E.; Pozzoli, M.; Cheng, S.; Traini, D.; Young, P.; Kourmatzis, A.; Caramella, C.;
Ong, H.X. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic
acid for localised treatment of nasal wounds. AAPS PharmSciTech 2019, 20, 299. [CrossRef]
73. Mattioli-Belmonte, M.; Zizzi, A.; Lucarini, G.; Giantomassi, F.; Biagini, G.; Tucci, G.; Orlando, F.; Provinciali, M.;
Carezzi, F.; Morganti, P. Chitin nanofibrils linked to chitosan glycolate as spray, gel, and gauze preparations
for wound repair. J. Bioact. Comp. Polym. 2007, 22, 525–538. [CrossRef]
74. Hampton, S. A new spray-on chitosan FH02— dressing for venous leg ulcers: An evaluation. J. Clin. Nurs.
2018, 32, 25–28.
75. Sharpe, A.; Tickle, J.; Hampton, S.; Gray, D. A multicentre evaluation of a new chitosan FH02— spray-on
dressing in patients with chronic wounds in the UK. J. Commun. Nurs. 2018, 32. Available online:
https://lqdspray.com/wp-content/uploads/2018/06/Multicentre-Evaluation.pdf (accessed on 4 May 2020).
76. Dai, T.; Tanaka, M.; Huang, Y.-Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial
and wound-healing e ects. Expert Rev. Anti-Infect. Ther. 2011, 9, 857–879. [CrossRef] [PubMed]
77. Mogo¸sanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burn dressing.
Int. J. Pharm. 2014, 463, 127–136. [CrossRef] [PubMed]
78. Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review.
Int. J. Pharm. 2020, 573, 118803. [CrossRef] [PubMed]
79. Varshney, L. Role of natural polysaccharides in radiation formation of PVA–hydrogel wound dressing.
Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 255, 343–349. [CrossRef]
80. Schiavon, M.; Francescon, M.; Drigo, D.; Salloum, G.; Baraziol, R.; Tesei, J.; Fraccalanza, E.; Barbone, F.
The use of Integra dermal regeneration template versus flaps for reconstruction of full-thickness scalp defects
involving the calvaria: A cost–benefit analysis. Aesthet. Plast. Surg. 2016, 40, 901–907. [CrossRef] [PubMed]
81. Myers, S.; Navsaria, H.; Ojeh, N. Skin engineering and keratinocyte stem cell therapy. In Tissue Engineering;
Elsevier: Amsterdam, The Netherlands, 2014; pp. 497–528.
82. Shakespeare, P.G. The role of skin substitutes in the treatment of burn injuries. Clin. Dermatol. 2005, 23,
413–418. [CrossRef]
83. Stiefel, D.; Schiestl, C.; Meuli, M. Integra Artificial Skin® for burn scar revision in adolescents and children.
Burns 2010, 36, 114–120. [CrossRef]
84. Broussard, K.C.; Powers, J.G.Wound dressings: Selecting the most appropriate type. Am. J. Clin. Dermatol.
2013, 14, 449–459. [CrossRef]
85. Yao, M.; Attalla, K.; Ren, Y.; French, M.A.; Driver, V.R. Ease of use, safety, and ecacy of integra bilayer
wound matrix in the treatment of diabetic foot ulcers in an outpatient clinical setting: A prospective pilot
study. J. Am. Pod. Med. Assoc. 2013, 103, 274–280. [CrossRef]
86. Bottcher-Haberzeth, S.; Biedermann, T.; Schiestl, C.; Hartmann-Fritsch, F.; Schneider, J.; Reichmann, E.;
Meuli, M. Matriderm (R) 1 mm versus Integra (R) Single Layer 1.3 mm for one-step closure of full thickness
skin defects: A comparative experimental study in rats. Pediatr. Surg. Int. 2012, 28, 171–177. [CrossRef]
87. Kolokythas, P.; Aust, M.; Vogt, P.; Paulsen, F. Dermal subsitute with the collagen-elastin matrix Matriderm in
burn injuries: A comprehensive review. Handchir. Mikrochir. Plast. Chir. Organ Dtsch. Arb. Handchir. Organ
Dtsch. Arb. Mikrochir. Peripher. Nerven GefasseOrgan V 2008, 40, 367–371.
88. Min, J.H.; Yun, I.S.; Lew, D.H.; Roh, T.S.; Lee, W.J. The use of matriderm and autologous skin graft in the
treatment of full thickness skin defects. Arch. Plast. Surg. 2014, 41, 330. [CrossRef] [PubMed]
Biomolecules 2020, 10, 1169 19 of 20
89. Haslik, W.; Kamolz, L.-P.; Nathschläger, G.; Andel, H.; Meissl, G.; Frey, M. First experiences with the
collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 2007,
33, 364–368. [CrossRef] [PubMed]
90. Cervelli, V.; Brinci, L.; Spallone, D.; Tati, E.; Palla, L.; Lucarini, L.; de Angelis, B. The use of MatriDerm® and
skin grafting in post-traumatic wounds. Int. Wound J. 2011, 8, 400–405. [CrossRef] [PubMed]
91. Ryssel, H.; Germann, G.; Kloeters, O.; Gazyakan, E.; Radu, C. Dermal substitution with Matriderm® in burns
on the dorsum of the hand. Burns 2010, 36, 1248–1253. [CrossRef]
92. de Vries, H.; Zeegelaar, J.; Middelkoop, E.; Gijsbers, G.; van Marle, J.; Wildevuur, C.; Westerhof, W.
Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes.
A clinical study. Br. J. Dermatol. 1995, 132, 690–697. [CrossRef]
93. Schneider, J.; Biedermann, T.; Widmer, D.; Montano, I.; Meuli, M.; Reichmann, E.; Schiestl, C.
Matriderm® versus Integra®: A comparative experimental study. Burns 2009, 35, 51–57. [CrossRef]
94. Catoira, M.C.; Fusaro, L.; di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for
regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [CrossRef]
95. Hartmann-Fritsch, F.; Biedermann, T.; Braziulis, E.; Luginbühl, J.; Pontiggia, L.; Böttcher-Haberzeth, S.;
van Kuppevelt, T.H.; Faraj, K.A.; Schiestl, C.; Meuli, M. Collagen hydrogels strengthened by biodegradable
meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical
intervention. J. Tissue Eng. Regener. Med. 2016, 10, 81–91. [CrossRef]
96. Seal, B.; Otero, T.; Panitch, A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng.
R Rep. 2001, 34, 147–230. [CrossRef]
97. Shahrokhi, S.; Arno, A.; Jeschke, M.G. The use of dermal substitutes in burn surgery: Acute phase.
Wound Repair Regener. 2014, 22, 14–22. [CrossRef] [PubMed]
98. Li, J.K.; Wang, N.; Wu, X.S. Poly (vinyl alcohol) nanoparticles prepared by freezing–thawing process for
protein/peptide drug delivery. J. Control. Release 1998, 56, 117–126. [CrossRef]
99. Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing
applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [CrossRef] [PubMed]
100. Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K. Syntheses of PVA/starch grafted hydrogels by irradiation.
Carbohydr. Polym. 2002, 50, 295–303. [CrossRef]
101. Khil, M.S.; Cha, D.I.; Kim, H.Y.; Kim, I.S.; Bhattarai, N. Electrospun nanofibrous polyurethane membrane as
wound dressing. J. Biomed. Mater. Res. Part B 2003, 67, 675–679. [CrossRef] [PubMed]
102. Cheshire, P.A.; Herson, M.R.; Cleland, H.; Akbarzadeh, S. Artificial dermal templates: A comparative study
of NovoSorb— Biodegradable Temporising Matrix (BTM) and Integra® Dermal Regeneration Template
(DRT). Burns 2016, 42, 1088–1096. [CrossRef]
103. Abed, S.; Dantzer, E.; Souraud, J.; Brissy, S.; Fournier, B.; Boyé, T.; Guennoc, B.; Morand, J. The place of skin
substitutes in surgical treatment of necrotising cellulitis: Seven cases. Ann. Dermatol. Venereol. 2013, 141,
49–52.
104. Danielsson, P.; Fredriksson, C.; Huss, F. A novel concept for treating large necrotizing fasciitis wounds with
bilayer dermal matrix, split-thickness skin grafts, and negative pressure wound therapy. Wounds 2009, 21,
215–220.
105. Wagsta , M.J.; Salna, I.M.; Caplash, Y.; Greenwood, J.E. Biodegradable Temporising Matrix (BTM) for the
reconstruction of defects following serial debridement for necrotising fasciitis: A case series. Burns Open
2019, 3, 12–30. [CrossRef]
106. Damkat-Thomas, L.; Greenwood, J.E.; Wagsta , M.J. A synthetic biodegradable temporising matrix in
degloving lower extremity trauma reconstruction: A case report. Plast. Reconst. Surg. Glob. Open 2019, 7.
[CrossRef]
107. Derakhshandeh, H.; Kashaf, S.S.; Aghabaglou, F.; Ghanavati, I.O.; Tamayol, A. Smart bandages: The future
of wound care. Trends Biotechnol. 2018, 36, 1259–1274. [CrossRef]
108. Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric
biomaterials for wound healing: A review. Prog. Biomater. 2018, 7, 1–21. [CrossRef]
109. Mehmood, N.; Hariz, A.; Fitridge, R.; Voelcker, N.H. Applications of modern sensors and wireless technology
in e ective wound management. J. Biomed. Mater. Res. Part B 2014, 102, 885–895. [CrossRef] [PubMed]
Biomolecules 2020, 10, 1169 20 of 20
110. Najafabadi, A.H.; Tamayol, A.; Annabi, N.; Ochoa, M.; Mostafalu, P.; Akbari, M.; Nikkhah, M.; Rahimi, R.;
Dokmeci, M.R.; Sonkusale, S. Biodegradable nanofibrous polymeric substrates for generating elastic and
flexible electronics. Adv. Mater. 2014, 26, 5823–5830. [CrossRef] [PubMed]
111. Ochoa, M.; Rahimi, R.; Ziaie, B. Flexible sensors for chronic wound management. IEEE Rev. Biomed. Eng.
2013, 7, 73–86. [CrossRef] [PubMed]
112. Jin, H.; Abu-Raya, Y.S.; Haick, H. Advanced materials for health monitoring with skin-based wearable
devices. Adv. Healthc. Mater. 2017, 6, 1700024. [CrossRef]
113. Feiner, R.; Wertheim, L.; Gazit, D.; Kalish, O.; Mishal, G.; Shapira, A.; Dvir, T. A stretchable and flexible
cardiac tissue–electronics hybrid enabling multiple drug release, sensing, and stimulation. Small 2019,
15, 1805526. [CrossRef]
114. Pang, Q.; Lou, D.; Li, S.; Wang, G.; Qiao, B.; Dong, S.; Ma, L.; Gao, C.; Wu, Z. Smart flexible
electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected
wounds. Adv. Sci. 2020, 7, 1902673. [CrossRef]
115. Tamayol, A.; Akbari, M.; Zilberman, Y.; Comotto, M.; Lesha, E.; Serex, L.; Bagherifard, S.; Chen, Y.; Fu, G.;
Ameri, S.K. Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Healthc. Mater. 2016, 5,
711–719. [CrossRef]
116. Percival, S.L.; McCarty, S.; Hunt, J.A.; Woods, E.J. The e ects of pH on wound healing, biofilms,
and antimicrobial ecacy. Wound Repair Regener. 2014, 22, 174–186. [CrossRef]
117. Jones, E.M.; Cochrane, C.A.; Percival, S.L. The e ect of pH on the extracellular matrix and biofilms.
Adv. Wound Care 2015, 4, 431–439. [CrossRef]
118. Sadat Ebrahimi, M.M.; Schoönherr, H. Enzyme-sensing chitosan hydrogels. Langmuir 2014, 30, 7842–7850.
[CrossRef] [PubMed]
119. Occhiuzzi, C.; Ajovalasit, A.; Sabatino, M.A.; Dispenza, C.; Marrocco, G. RFID epidermal sensor including
hydrogel membranes for wound monitoring and healing. In Proceedings of IEEE International Conference
on RFID (RFID), San Diego, CA, USA, 15 April 2015; pp. 182–188.
120. Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I.K.; Bagherifard, S.;
Dokmeci, M.R.; Ziaie, B. Smart bandage for monitoring and treatment of chronic wounds. Small 2018,
14, 1703509. [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).References
1. Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in skin
regeneration using tissue engineering. Int. J. Mol. Sci. 2017, 18, 789. [CrossRef] [PubMed]
2. Herndon, D.N.; Barrow, R.E.; Rutan, R.L.; Rutan, T.C.; Desai, M.H.; Abston, S. A comparison of conservative
versus early excision. Therapies in severely burned patients. Ann. Surg. 1989, 209, 547. [CrossRef] [PubMed]
3. Schiestl, C.; Stiefel, D.; Meuli, M. Giant naevus, giant excision, eleg (i) ant closure? Reconstructive surgery
with Integra Artificial Skin® to treat giant congenital melanocytic naevi in children. J. Plast. Reconst.
Aesthet. Surg. 2010, 63, 610–615. [CrossRef] [PubMed]
4. Schiestl, C.; Neuhaus, K.; Biedermann, T.; Böttcher-Haberzeth, S.; Reichmann, E.; Meuli, M. Novel treatment
for massive lower extremity avulsion injuries in children: Slow, but e ective with good cosmesis. Eur. J.
Pediatr. Surg. 2011, 21, 106–110. [CrossRef] [PubMed]
5. Böttcher-Haberzeth, S.; Kapoor, S.; Meuli, M.; Neuhaus, K.; Biedermann, T.; Reichmann, E.; Schiestl, C.
Osmotic expanders in children: No filling–no control–no problem? Eur. J. Pediatr. Surg. 2011, 21, 163–167.
[CrossRef]
6. Barbour, J.R.; Schweppe, M.; Seung-Jun, O. Lower-extremity burn reconstruction in the child. J. Carnio. Surg.
2008, 19, 976–988. [CrossRef]
7. Berman, B.; Viera, M.H.; Amini, S.; Huo, R.; Jones, I.S. Prevention and management of hypertrophic scars
and keloids after burns in children. J. Carnio. Surg. 2008, 19, 989–1006. [CrossRef]
8. Klar, A.S.; Böttcher-Haberzeth, S.; Biedermann, T.; Schiestl, C.; Reichmann, E.; Meuli, M. Analysis of blood
and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of di erent
pigmentation. Pediatr. Surg. Int. 2014, 30, 223–231. [CrossRef]
9. Klar, A.S.; Güven, S.; Biedermann, T.; Luginbühl, J.; Böttcher-Haberzeth, S.; Meuli-Simmen, C.; Meuli, M.;
Martin, I.; Scherberich, A.; Reichmann, E. Tissue-engineered dermo-epidermal skin grafts prevascularized
with adipose-derived cells. Biomaterials 2014, 35, 5065–5078. [CrossRef]
10. Klar, A.S.; Michalak-Mi´cka, K.; Biedermann, T.; Simmen-Meuli, C.; Reichmann, E.; Meuli, M.
Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin
substitutes in vivo. Pediatr. Surg. Int. 2018, 34, 129–135. [CrossRef]
11. Augustine, R.; Kalarikkal, N.; Thomas, S. Advancement of wound care from grafts to bioengineered smart
skin substitutes. Prog. Biomater. 2014, 3, 103–113. [CrossRef] [PubMed]
12. Halim, A.S.; Khoo, T.L.; Yussof, S.J.M. Biologic and synthetic skin substitutes: An overview. Indian J.
Plast. Surg. 2010, 43, S23–S28. [CrossRef]
13. Balakrishnan, B.; Mohanty, M.; Umashankar, P.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel
wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26, 6335–6342. [CrossRef]
[PubMed]
14. Holland, T.; Chaouk, H.; Asfaw, B.; Goodrich, S.; Hunter, A.; Francis, V. Spray hydrogel wound dressings.
Google Patents No. 09/960,449, 2002.
15. Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-hydrogel: A hybrid biomaterial system for localized
drug delivery. Ann. Biomed. Eng. 2016, 44, 2049–2061. [CrossRef] [PubMed]
16. Metcalfe, A.D.; Ferguson, M.W. Tissue engineering of replacement skin: The crossroads of biomaterials,
wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 2007, 4, 413–437.
[CrossRef]
17. Kolarsick, P.A.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurs. Assoc.
2011, 3, 203–213. [CrossRef]
18. Chu, D. Overview of Biology, Development, and Structure of Skin; Wol , K., Goldsmith, L.A., Katz, S.I.,
Gilchrest, B.A., Paller, A.S., Le ell, D.J., Eds.; McGraw-Hill: New York, NY, USA, 2008.
19. Standring, S. Gray’s Anatomy E-book: The Anatomical Basis of Clinical Practice; Elsevier Health Sciences:
Amsterdam, The Netherlands, 2015.
20. Aumailley, M.; Rousselle, P. Laminins of the dermo–epidermal junction. Matrix Biol. 1999, 18, 19–28.
[CrossRef]
21. Timpl, R.; Brown, J.C. Supramolecular assembly of basement membranes. Bioessays 1996, 18, 123–132.
[CrossRef]
Biomolecules 2020, 10, 1169 16 of 20
22. Fleischmajer, R.; Kühn, K.; Sato, Y.; MacDonald, E.D., II; Perlish, J.S.; Pan, T.-C.; Chu, M.-L.; Kishiro, Y.;
Oohashi, T.; Bernier, S.M. There is temporal and spatial expression of  1 (IV),  2 (IV),  5 (IV),  6 (IV)
collagen chains and  1 integrins during the development of the basal lamina in an “in vitro” skin model.
J. Investig. Dermatol. 1997, 109, 527–533. [CrossRef]
23. Smola, H.; Stark, H.-J.; Thiekötter, G.;Mirancea, N.; Krieg, T.; Fusenig, N.E. Dynamics of basement membrane
formation by keratinocyte–fibroblast interactions in organotypic skin culture. Exp. Cell. Res. 1998, 239,
399–410. [CrossRef]
24. Yamane, Y.; Yaoita, H.; Couchman, J.R. Basement membrane proteoglycans are of epithelial origin in
rodent skin. J. Invest. Dermatol. 1996, 106, 531–537. [CrossRef] [PubMed]
25. Rittié, L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal. 2016,
10, 103–120. [CrossRef] [PubMed]
26. Pereira, R.F.; Sousa, A.; Barrias, C.C.; Bayat, A.; Granja, P.L.; Bártolo, P.J. Advances in bioprinted cell-laden
hydrogels for skin tissue engineering. Biomanufacturing Rev. 2017, 2, 1. [CrossRef]
27. Wallig, M.A.; Bolon, B.; Haschek,W.M.; Rousseaux, C.G. Fundamentals of Toxicologic Pathology; Academic Press:
Cambridge, MA, USA, 2017.
28. Clayton, K.; Vallejo, A.F.; Davies, J.; Sirvent, S.; Polak, M.E. Langerhans cells—Programmed by the epidermis.
Front. Immunol. 2017, 8, 1676. [CrossRef]
29. Massella, D.; Argenziano, M.; Ferri, A.; Guan, J.; Giraud, S.; Cavalli, R.; Barresi, A.A.; Salaün, F. Bio-functional
textiles: Combining pharmaceutical nanocarriers with fibrous materials for innovative dermatological
therapies. Pharmaceutics 2019, 11, 403. [CrossRef]
30. Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound healing phases. StatPearls 2019. Available online:
https://europepmc.org/article/NBK/NBK470443 (accessed on 4 May 2020).
31. Gonzalez, A.C.d.O.; Costa, T.F.; Andrade, Z.D.A.; Medrado, A.R.A.P.Wound healing—A literature review.
An. Bras. Dermatol. 2016, 91, 614–620. [CrossRef]
32. Yun, S.-H.; Sim, E.-H.; Goh, R.-Y.; Park, J.-I.; Han, J.-Y. Platelet activation: The mechanisms and potential
biomarkers. Biomed Res. Int. 2016, 2016. [CrossRef]
33. Rasche, H. Haemostasis and thrombosis: An overview. Eur. Heart J. Suppl. 2001, 3, Q3–Q7. [CrossRef]
34. Versteeg, H.H.; Heemskerk, J.W.; Levi, M.; Reitsma, P.H. New fundamentals in hemostasis. Physiol. Rev.
2013, 93, 327–358. [CrossRef]
35. Rossaint, J.; Margraf, A.; Zarbock, A. Role of platelets in leukocyte recruitment and resolution of inflammation.
Front. Immunol. 2018, 9, 2712. [CrossRef] [PubMed]
36. Schultz, G.S.; Chin, G.A.; Moldawer, L.; Diegelmann, R.F. Principles of wound healing. In Mechanisms of
Vascular Disease: A Reference Book for Vascular Specialists [Internet]; University of Adelaide Press: Adelaide,
Australia, 2011.
37. Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. Tissue repair and the dynamics of the extracellular matrix.
Int. J. Biochem. Cell Biol. 2004, 36, 1031–1037. [CrossRef] [PubMed]
38. desJardins-Park, H.E.; Foster, D.S.; Longaker, M.T. Fibroblasts and wound healing: An update. Future Med.
2018. [CrossRef] [PubMed]
39. Bowden, L.; Byrne, H.; Maini, P.; Moulton, D. A morphoelastic model for dermal wound closure.
Biomech. Mod. Mechan. 2016, 15, 663–681. [CrossRef]
40. Lazarus, G.S.; Cooper, D.M.; Knighton, D.R.; Margolis, D.J.; Percoraro, R.E.; Rodeheaver, G.; Robson, M.C.
Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regener. 1994,
2, 165–170. [CrossRef]
41. Percival, N.J. Classification of wounds and their management. Surgery (Oxf.) 2002, 20, 114–117. [CrossRef]
42. Golinko, M.S.; Clark, S.; Rennert, R.; Flattau, A.; Boulton, A.J.; Brem, H. Wound emergencies:
The importance of assessment, documentation, and early treatment using a wound electronic medical
record. Ostomy/Wound Manag. 2009, 55, 54.
43. Moore, K.; McCallion, R.; Searle, R.J.; Stacey, M.C.; Harding, K.G. Prediction and monitoring the therapeutic
response of chronic dermal wounds. Int. Wound J. 2006, 3, 89–98. [CrossRef]
44. Uccioli, L.; Izzo, V.; Meloni, M.; Vainieri, E.; Ruotolo, V.; Giurato, L. Non-healing foot ulcers in diabetic
patients: General and local interfering conditions and management options with advanced wound dressings.
J. Wound Care 2015, 24, 35–42. [CrossRef]
Biomolecules 2020, 10, 1169 17 of 20
45. Nicodemus, G.D.; Bryant, S.J. Cell encapsulation in biodegradable hydrogels for tissue engineering
applications. Tissue Eng. Part B 2008, 14, 149–165. [CrossRef]
46. Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M.Wound healing dressings and drug delivery
systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923. [CrossRef] [PubMed]
47. Kumar, A.; Jaiswal, M. Design and in vitro investigation of nanocomposite hydrogel based in situ spray
dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J. Appl. Polym. Sci.
2016, 133. [CrossRef]
48. van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as sca olds for tissue engineering
applications: A review. Biomacromolecules 2011, 12, 1387–1408. [CrossRef] [PubMed]
49. Bilici, C.; Can, V.; Noöchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels
with self-healing ability of high mechanical strength. Macromol. 2016, 49, 7442–7449. [CrossRef]
50. Koehler, J.; Brandl, F.P.; Goepferich, A.M. Hydrogel wound dressings for bioactive treatment of acute and
chronic wounds. Eur. Polym. J. 2018, 100, 1–11. [CrossRef]
51. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery.
Drug Discov. Today 2002, 7, 569–579. [CrossRef]
52. Tavakoli, S.; Mokhtari, H.; Kharaziha, M.; Kermanpour, A.; Talebi, A.; Moshtaghian, J. A multifunctional
nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for
diabetic wounds. Mater. Sci. Eng. C 2020, 110837. [CrossRef]
53. Jones, A.; Vaughan, D. Hydrogel dressings in the management of a variety of wound types: A review.
J. Orthop. Nurs. 2005, 9, S1–S11. [CrossRef]
54. Dhivya, S.; Padma, V.V.; Santhini, E.Wound dressings–A review. BioMedicine 2015, 5. [CrossRef]
55. White, R. Wound dressings and other topical treatment modalities in bioburden control. J. Wound Care 2011,
20, 431–439. [CrossRef]
56. Pereira, R.F.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. Cell-instructive pectin hydrogels crosslinked via
thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater. 2018, 66, 282–293.
[CrossRef] [PubMed]
57. Mihaila, S.M.; Gaharwar, A.K.; Reis, R.L.; Marques, A.P.; Gomes, M.E.; Khademhosseini, A.
Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv. Healthc. Mater.
2013, 2, 895–907. [CrossRef] [PubMed]
58. Pereira, R.F.; Sousa, A.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. A single-component hydrogel bioink for
bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater. Horiz. 2018, 5, 1100–1111.
[CrossRef]
59. Chouhan, D.; Lohe, T.u.; Samudrala, P.K.; Mandal, B.B. In situ forming injectable silk fibroin hydrogel
promotes skin regeneration in full thickness burn wounds. Adv. Healthc. Mater. 2018, 7, 1801092. [CrossRef]
60. Tavakoli, S.; Kharaziha, M.; Kermanpur, A.; Mokhtari, H. Sprayable and injectable visible-light
Kappa-carrageenan hydrogel for in-situ soft tissue engineering. Int. J. Biol. Macromol. 2019, 138, 590–601.
[CrossRef] [PubMed]
61. Sun, M.; Sun, X.;Wang, Z.; Guo, S.; Yu, G.; Yang, H. Synthesis and properties of gelatin methacryloyl (GelMA)
hydrogels and their recent applications in load-bearing tissue. Polymers 2018, 10, 1290. [CrossRef]
62. Tondera, C.; Hauser, S.; Krüger-Genge, A.; Jung, F.; Ne e, A.T.; Lendlein, A.; Klopfleisch, R.; Steinbach, J.;
Neuber, C.; Pietzsch, J. Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from
multimodal preclinical imaging in immunocompetent nude mice. Theranostics 2016, 6, 2114. [CrossRef]
63. Neumann, P.; Zur, B.; Ehrenreich, Y. Gelatin-based sprayable foam as a skin substitute. J. Biomed. Mater. Res.
1981, 15, 9–18. [CrossRef]
64. Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z.Y.; Cui, W.; Annabi, N.; Ng, K.W.; Dokmeci, M.R.;
Ghaemmaghami, A.M.; Khademhosseini, A. Photocrosslinkable gelatin hydrogel for epidermal tissue
engineering. Adv. Healthc. Mater. 2016, 5, 108–118. [CrossRef]
65. Annabi, N.; Rana, D.; Sani, E.S.; Portillo-Lara, R.; Gi ord, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S.
Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing.
Biomaterials 2017, 139, 229–243. [CrossRef]
66. Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan based hydrogels for drug
delivery, tissue engineering and wound healing. Carbohydr. Polym. 2018, 198, 385–400. [CrossRef] [PubMed]
Biomolecules 2020, 10, 1169 18 of 20
67. Mokhtari, H.; Kharaziha, M.; Karimzadeh, F.; Tavakoli, S. An injectable mechanically robust hydrogel of
Kappa-carrageenan-dopamine functionalized graphene oxide for promoting cell growth. Carbohydr. Polym.
2019, 214, 234–249. [CrossRef] [PubMed]
68. Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and
pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1. [PubMed]
69. Peniche, C.; Argüelles-Monal, W.; Peniche, H.; Acosta, N. Chitosan: An attractive biocompatible polymer for
microencapsulation. Macromol. Biosci. 2003, 3, 511–520. [CrossRef]
70. Ong, S.-Y.;Wu, J.; Moochhala, S.M.; Tan, M.-H.; Lu, J. Development of a chitosan-based wound dressing with
improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332. [CrossRef] [PubMed]
71. Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a
biological adhesive. J. Biomed. Mater. Res. 2000, 49, 289–295. [CrossRef]
72. Gholizadeh, H.; Messerotti, E.; Pozzoli, M.; Cheng, S.; Traini, D.; Young, P.; Kourmatzis, A.; Caramella, C.;
Ong, H.X. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic
acid for localised treatment of nasal wounds. AAPS PharmSciTech 2019, 20, 299. [CrossRef]
73. Mattioli-Belmonte, M.; Zizzi, A.; Lucarini, G.; Giantomassi, F.; Biagini, G.; Tucci, G.; Orlando, F.; Provinciali, M.;
Carezzi, F.; Morganti, P. Chitin nanofibrils linked to chitosan glycolate as spray, gel, and gauze preparations
for wound repair. J. Bioact. Comp. Polym. 2007, 22, 525–538. [CrossRef]
74. Hampton, S. A new spray-on chitosan FH02— dressing for venous leg ulcers: An evaluation. J. Clin. Nurs.
2018, 32, 25–28.
75. Sharpe, A.; Tickle, J.; Hampton, S.; Gray, D. A multicentre evaluation of a new chitosan FH02— spray-on
dressing in patients with chronic wounds in the UK. J. Commun. Nurs. 2018, 32. Available online:
https://lqdspray.com/wp-content/uploads/2018/06/Multicentre-Evaluation.pdf (accessed on 4 May 2020).
76. Dai, T.; Tanaka, M.; Huang, Y.-Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial
and wound-healing e ects. Expert Rev. Anti-Infect. Ther. 2011, 9, 857–879. [CrossRef] [PubMed]
77. Mogo¸sanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burn dressing.
Int. J. Pharm. 2014, 463, 127–136. [CrossRef] [PubMed]
78. Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review.
Int. J. Pharm. 2020, 573, 118803. [CrossRef] [PubMed]
79. Varshney, L. Role of natural polysaccharides in radiation formation of PVA–hydrogel wound dressing.
Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 255, 343–349. [CrossRef]
80. Schiavon, M.; Francescon, M.; Drigo, D.; Salloum, G.; Baraziol, R.; Tesei, J.; Fraccalanza, E.; Barbone, F.
The use of Integra dermal regeneration template versus flaps for reconstruction of full-thickness scalp defects
involving the calvaria: A cost–benefit analysis. Aesthet. Plast. Surg. 2016, 40, 901–907. [CrossRef] [PubMed]
81. Myers, S.; Navsaria, H.; Ojeh, N. Skin engineering and keratinocyte stem cell therapy. In Tissue Engineering;
Elsevier: Amsterdam, The Netherlands, 2014; pp. 497–528.
82. Shakespeare, P.G. The role of skin substitutes in the treatment of burn injuries. Clin. Dermatol. 2005, 23,
413–418. [CrossRef]
83. Stiefel, D.; Schiestl, C.; Meuli, M. Integra Artificial Skin® for burn scar revision in adolescents and children.
Burns 2010, 36, 114–120. [CrossRef]
84. Broussard, K.C.; Powers, J.G.Wound dressings: Selecting the most appropriate type. Am. J. Clin. Dermatol.
2013, 14, 449–459. [CrossRef]
85. Yao, M.; Attalla, K.; Ren, Y.; French, M.A.; Driver, V.R. Ease of use, safety, and ecacy of integra bilayer
wound matrix in the treatment of diabetic foot ulcers in an outpatient clinical setting: A prospective pilot
study. J. Am. Pod. Med. Assoc. 2013, 103, 274–280. [CrossRef]
86. Bottcher-Haberzeth, S.; Biedermann, T.; Schiestl, C.; Hartmann-Fritsch, F.; Schneider, J.; Reichmann, E.;
Meuli, M. Matriderm (R) 1 mm versus Integra (R) Single Layer 1.3 mm for one-step closure of full thickness
skin defects: A comparative experimental study in rats. Pediatr. Surg. Int. 2012, 28, 171–177. [CrossRef]
87. Kolokythas, P.; Aust, M.; Vogt, P.; Paulsen, F. Dermal subsitute with the collagen-elastin matrix Matriderm in
burn injuries: A comprehensive review. Handchir. Mikrochir. Plast. Chir. Organ Dtsch. Arb. Handchir. Organ
Dtsch. Arb. Mikrochir. Peripher. Nerven GefasseOrgan V 2008, 40, 367–371.
88. Min, J.H.; Yun, I.S.; Lew, D.H.; Roh, T.S.; Lee, W.J. The use of matriderm and autologous skin graft in the
treatment of full thickness skin defects. Arch. Plast. Surg. 2014, 41, 330. [CrossRef] [PubMed]
Biomolecules 2020, 10, 1169 19 of 20
89. Haslik, W.; Kamolz, L.-P.; Nathschläger, G.; Andel, H.; Meissl, G.; Frey, M. First experiences with the
collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 2007,
33, 364–368. [CrossRef] [PubMed]
90. Cervelli, V.; Brinci, L.; Spallone, D.; Tati, E.; Palla, L.; Lucarini, L.; de Angelis, B. The use of MatriDerm® and
skin grafting in post-traumatic wounds. Int. Wound J. 2011, 8, 400–405. [CrossRef] [PubMed]
91. Ryssel, H.; Germann, G.; Kloeters, O.; Gazyakan, E.; Radu, C. Dermal substitution with Matriderm® in burns
on the dorsum of the hand. Burns 2010, 36, 1248–1253. [CrossRef]
92. de Vries, H.; Zeegelaar, J.; Middelkoop, E.; Gijsbers, G.; van Marle, J.; Wildevuur, C.; Westerhof, W.
Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes.
A clinical study. Br. J. Dermatol. 1995, 132, 690–697. [CrossRef]
93. Schneider, J.; Biedermann, T.; Widmer, D.; Montano, I.; Meuli, M.; Reichmann, E.; Schiestl, C.
Matriderm® versus Integra®: A comparative experimental study. Burns 2009, 35, 51–57. [CrossRef]
94. Catoira, M.C.; Fusaro, L.; di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for
regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [CrossRef]
95. Hartmann-Fritsch, F.; Biedermann, T.; Braziulis, E.; Luginbühl, J.; Pontiggia, L.; Böttcher-Haberzeth, S.;
van Kuppevelt, T.H.; Faraj, K.A.; Schiestl, C.; Meuli, M. Collagen hydrogels strengthened by biodegradable
meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical
intervention. J. Tissue Eng. Regener. Med. 2016, 10, 81–91. [CrossRef]
96. Seal, B.; Otero, T.; Panitch, A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng.
R Rep. 2001, 34, 147–230. [CrossRef]
97. Shahrokhi, S.; Arno, A.; Jeschke, M.G. The use of dermal substitutes in burn surgery: Acute phase.
Wound Repair Regener. 2014, 22, 14–22. [CrossRef] [PubMed]
98. Li, J.K.; Wang, N.; Wu, X.S. Poly (vinyl alcohol) nanoparticles prepared by freezing–thawing process for
protein/peptide drug delivery. J. Control. Release 1998, 56, 117–126. [CrossRef]
99. Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing
applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [CrossRef] [PubMed]
100. Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K. Syntheses of PVA/starch grafted hydrogels by irradiation.
Carbohydr. Polym. 2002, 50, 295–303. [CrossRef]
101. Khil, M.S.; Cha, D.I.; Kim, H.Y.; Kim, I.S.; Bhattarai, N. Electrospun nanofibrous polyurethane membrane as
wound dressing. J. Biomed. Mater. Res. Part B 2003, 67, 675–679. [CrossRef] [PubMed]
102. Cheshire, P.A.; Herson, M.R.; Cleland, H.; Akbarzadeh, S. Artificial dermal templates: A comparative study
of NovoSorb— Biodegradable Temporising Matrix (BTM) and Integra® Dermal Regeneration Template
(DRT). Burns 2016, 42, 1088–1096. [CrossRef]
103. Abed, S.; Dantzer, E.; Souraud, J.; Brissy, S.; Fournier, B.; Boyé, T.; Guennoc, B.; Morand, J. The place of skin
substitutes in surgical treatment of necrotising cellulitis: Seven cases. Ann. Dermatol. Venereol. 2013, 141,
49–52.
104. Danielsson, P.; Fredriksson, C.; Huss, F. A novel concept for treating large necrotizing fasciitis wounds with
bilayer dermal matrix, split-thickness skin grafts, and negative pressure wound therapy. Wounds 2009, 21,
215–220.
105. Wagsta , M.J.; Salna, I.M.; Caplash, Y.; Greenwood, J.E. Biodegradable Temporising Matrix (BTM) for the
reconstruction of defects following serial debridement for necrotising fasciitis: A case series. Burns Open
2019, 3, 12–30. [CrossRef]
106. Damkat-Thomas, L.; Greenwood, J.E.; Wagsta , M.J. A synthetic biodegradable temporising matrix in
degloving lower extremity trauma reconstruction: A case report. Plast. Reconst. Surg. Glob. Open 2019, 7.
[CrossRef]
107. Derakhshandeh, H.; Kashaf, S.S.; Aghabaglou, F.; Ghanavati, I.O.; Tamayol, A. Smart bandages: The future
of wound care. Trends Biotechnol. 2018, 36, 1259–1274. [CrossRef]
108. Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric
biomaterials for wound healing: A review. Prog. Biomater. 2018, 7, 1–21. [CrossRef]
109. Mehmood, N.; Hariz, A.; Fitridge, R.; Voelcker, N.H. Applications of modern sensors and wireless technology
in e ective wound management. J. Biomed. Mater. Res. Part B 2014, 102, 885–895. [CrossRef] [PubMed]
Biomolecules 2020, 10, 1169 20 of 20
110. Najafabadi, A.H.; Tamayol, A.; Annabi, N.; Ochoa, M.; Mostafalu, P.; Akbari, M.; Nikkhah, M.; Rahimi, R.;
Dokmeci, M.R.; Sonkusale, S. Biodegradable nanofibrous polymeric substrates for generating elastic and
flexible electronics. Adv. Mater. 2014, 26, 5823–5830. [CrossRef] [PubMed]
111. Ochoa, M.; Rahimi, R.; Ziaie, B. Flexible sensors for chronic wound management. IEEE Rev. Biomed. Eng.
2013, 7, 73–86. [CrossRef] [PubMed]
112. Jin, H.; Abu-Raya, Y.S.; Haick, H. Advanced materials for health monitoring with skin-based wearable
devices. Adv. Healthc. Mater. 2017, 6, 1700024. [CrossRef]
113. Feiner, R.; Wertheim, L.; Gazit, D.; Kalish, O.; Mishal, G.; Shapira, A.; Dvir, T. A stretchable and flexible
cardiac tissue–electronics hybrid enabling multiple drug release, sensing, and stimulation. Small 2019,
15, 1805526. [CrossRef]
114. Pang, Q.; Lou, D.; Li, S.; Wang, G.; Qiao, B.; Dong, S.; Ma, L.; Gao, C.; Wu, Z. Smart flexible
electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected
wounds. Adv. Sci. 2020, 7, 1902673. [CrossRef]
115. Tamayol, A.; Akbari, M.; Zilberman, Y.; Comotto, M.; Lesha, E.; Serex, L.; Bagherifard, S.; Chen, Y.; Fu, G.;
Ameri, S.K. Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Healthc. Mater. 2016, 5,
711–719. [CrossRef]
116. Percival, S.L.; McCarty, S.; Hunt, J.A.; Woods, E.J. The e ects of pH on wound healing, biofilms,
and antimicrobial ecacy. Wound Repair Regener. 2014, 22, 174–186. [CrossRef]
117. Jones, E.M.; Cochrane, C.A.; Percival, S.L. The e ect of pH on the extracellular matrix and biofilms.
Adv. Wound Care 2015, 4, 431–439. [CrossRef]
118. Sadat Ebrahimi, M.M.; Schoönherr, H. Enzyme-sensing chitosan hydrogels. Langmuir 2014, 30, 7842–7850.
[CrossRef] [PubMed]
119. Occhiuzzi, C.; Ajovalasit, A.; Sabatino, M.A.; Dispenza, C.; Marrocco, G. RFID epidermal sensor including
hydrogel membranes for wound monitoring and healing. In Proceedings of IEEE International Conference
on RFID (RFID), San Diego, CA, USA, 15 April 2015; pp. 182–188.
120. Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I.K.; Bagherifard, S.;
Dokmeci, M.R.; Ziaie, B. Smart bandage for monitoring and treatment of chronic wounds. Small 2018,
14, 1703509. [CrossRef] [PubMed]

This entry is offline, you can click here to edit this entry!