Biopotential Signal Monitoring Systems in Rehabilitation: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Subjects: Rehabilitation
Contributor:

Rehabilitation consists of an iterative process involving assessments and specialized training, which unfortunately are often limited by healthcare centres’ restricted resources. To overcome this limitation, wearable technology should be an important, potential and valid solution to objectively assess and monitor patients inside and/or outside clinical environments. The information extracted by the use of this technology should provide a more detailed evaluation of the impairment, also allowing the identification of rehabilitation therapies.

  • biomedical signal
  • monitoring system
  • rehabilitation
  • signal processing

1. Introduction

Biomedical wearable sensors allow the measurement of physiologic parameters in a continuous, real-time and non-invasive way, including a wide range of advances in electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG)-based sensing platforms [1,2,3]. These platforms and their related sensors have different diagnostic and monitoring applications [4,5]. For example, physiological monitoring could support both diagnosis and ongoing treatment for many diseases involving movement disorders [6]. Furthermore, home-based motion sensing could assist the subject in rehabilitation path and falls prevention, helping him/her improve his/her independence and lifestyle [7]. Moreover, sensors acquire and analyze biomedical signals to monitoring the effectiveness of home-based rehabilitation therapies, for example, in stroke survivors, in patients undergoing surgery, in subjects involved in accidents or to evaluating the use of mobility assistive devices in older adults [8,9,10]. Moreover, the monitoring of physiological signals and parameters could also be a good support in many clinical and non-clinical applications, e.g., in sporting activities to evaluate performance and physical condition of athletes [1,11], in postural control to correct stability, or in a physiotherapy context after injury [12,13]. Generally, the measurement of physical activity parameters aids in guiding many types of applications; e.g., (i) monitoring physical activity during rehabilitation or in a physical therapy setting; (ii) evaluating the success of an intervention and tracking physical activity post-surgery; (iii) evaluating patient mobility; (iv) all (risk) detection; and (v) monitoring physical activity in patients with chronic diseases and disabilities involving movement disorders. Most recently, the coronavirus disease 2019 (COVID-19) pandemic has affected access to standard rehabilitation services, highlighting the need to define new rehabilitation perspectives as telemedicine [14,15]. During this period, the rehabilitation concept considerably changed: the need for home medical assistance for a new idea of rehabilitation phase in older people both with and without COVID-19, in patients affected by neuro-motor disease, in subjects with limited movements after injury or accident and athletes is becoming essential to help these people in maintaining their daily activities. In this context, tele-rehabilitation became an effective and well-accepted method of providing outpatient and community rehabilitation services to support family and caregivers in the assessment of the home environment, patient monitoring and outpatient therapies [16,17,18]. In emergencies such as the COVID 19 pandemic, access to health services is restricted due to the risk of infections and limitations of health resources [14,19]. For this reason, telemedicine services have proved extremely useful by providing home monitoring and rehabilitation solutions and thus minimizing the risk of infection. Survivors of COVID-19-associated pneumonia may experience a long-term reduction in functional capacity and muscle strength. Telerehabilitation (TR) programs could be effective for patients after COVID-19 [14]. However, few studies have assessed whether telerehabilitation for COVID-19 patients is an effective tool. In [20,21], telerehabilitation programs consist of home exercises for aerobic reconditioning, muscle strengthening, and healthy lifestyle education. The physiotherapist (PT) contacts the patient via video call via a dedicated platform to monitor progress. Moreover, physicians can add chest physiotherapy exercises for lung expansion and strengthening of the respiratory muscles. In these programs, a pulse oximeter as a monitoring device is also used.

Many healthcare devices for rehabilitation provide biosignals, such as blood pressure, blood glucose levels, EEGs, ECGs and EMGs [22]. The main bioelectrical signals are generated by the heart, the brain and the muscles, producing ECGs, EEGs and EMGs, respectively. ECG, EEG and EMG signals are characterized by low amplitude (generally, expressed in mV—millivolts) and low operating frequencies, from frequency Hz to some kHz range [23]. The acquisition, analysis and interpretation of these signals are fully reported in the literature [24,25,26,27,28,29,30,31]. Physical activity is often associated with the cardiovascular and muscular systems. Therefore, electrical signal variations cause ECG and EMG during athletic activities, and they are essential and commonly adopted parameters for healthcare management and rehabilitation protocols. In particular, EMG signal is the typical clinical recording method used to diagnose and monitor neuromuscular behaviours. Surface EMG (sEMG) allows extraction of information on muscle activation during a movement or effort, identifying impairment and functional alteration useful in clinical evaluation [32,33]. This information can be presented in different forms (e.g., amplitude, timing, morphology, muscle fibre conduction velocity or muscle coordination). They are relevant in many fields, from orthopaedics and neurorehabilitation to movement analysis in exercise and sport or aging [34,35]. This review aims to focus on EMG signal acquisition devices, also combined with other biosignals ECG and EEG, in rehabilitation pathways, especially for telemedicine applications. This contribution is proposed as a review by addressing questions such as (i) what are the most recent contributions in literature? (ii) what are the commonly used medical devices? (iii) how do these contributions and medical devices support physiological monitoring in rehabilitation? and (iv) what are the future directions and opportunities for EMG signal acquisition and analysis in a rehabiliation context? Many reviews are presented in the literature regarding biosignal acquisition devices for rehabilitation applications, but to the best of our knowledge, EMG signal has been considered only in specific context for single review. This review is thus a general but detailed comprehensive overview of EMG monitoring systems aiming to resume and to discuss the different and important solutions of EMG applications in different rehabilitation contexts. The key contributions of this review are outlined as follows. Section 2 presents a summary of basic concepts such as bioelectrical signalss and medical devices aiming to identify their main features and characteristics. These concepts are required background knowledge to this review. Section 3 reports the research methodology applied to define this review. Section 4 proposes an intense state-of-the-art about the last 5 years’ contributions in wearable sensors and platforms to summarize recent developments in the field of wearable sensors and systems used for rehabilitation. In Section 5 , most commercial biomedical signal acquisition and processing sensors and devices have been reported comparing physical and performance characteristics. Section 6 has also been formulated to summarize and discuss the literature on EMG signal acquisition devices in rehabilitation and to explores their challenges and their future direction. Finally, Section 7 provides conclusions of the article.

2. Wearable Devices for Rehabilitation

Generally, these systems present heavy drawbacks regarding the limitation in acquiring and sending data at high rates, the low energy efficiency and the restricted portability due to their large size and weight. To overcome these limitations and make these systems more efficient, wearable devices are becoming essential in daily and clinical practice to allow continuous monitoring of human activity in terms of changes in biological signals. The increasing trends of wearable devices and the multimodal acquisition of different biosignals are crucial for advancing disease-diagnosis and treatment. Wearable devices perform activity monitoring through two main processes: (i) data acquisition and preprocessing; (ii) transmission, analysis and classification of acquired data. Signal preprocessing, for example, includes amplification and filtering stage; signal analysis, instead, involves averaging or extraction of relevant features to be used as training data for classifier [83].

In literature, many contributions are available concerning the design and the implementation of wearable sensors aiming to define platforms of multimodal acquisition and recognition of different biosignals, such as electroencephalography, electromyography and electrocardiography, for continuous and automatic monitoring of human health status, improving diagnosis, follow-up and therapeutic strategies of several disorders. Wearable devices usually involve smart sensors to detect and monitor a set of physiological parameters aiming to support their continuous monitoring for diagnostic, therapeutic and control purposes [84]. The great demand of the aging population for healthcare management needs the use of these wearable medical devices to monitor personal health information in real-time to prevent diseases and emergency health risks. Today, many wearable healthcare devices provide biosignals, such as EEGs, ECGs, EMGs, blood pressure or blood glucose levels. Electrical signal variations cause ECG and EMG during muscular activities, and they are important and commonly adopted parameters for healthcare management and rehabilitation protocols.

Liu et al. in [85] propose a portable and wireless acquisition system to acquire physiological signals. The system mainly consists of a portable device, a graphic user interface (GUI) and an application program for displaying the signals on a computer or a smart device. This device is characterized by eight measuring channels, a powerful microcontroller unit, a lithium battery, Bluetooth 3.0 data transmission and a built-in 2 GB flash memory. The results show that as this system can measure signals in real-time, supporting physicians and researchers can perform experiments collecting physiological signals of interest.

A summary of these contributions about wearable monitoring systems chosen among the papers in the literature published in the last 5 years is made in Table 2 .

3. Commercial Wearable Devices

Wearable portable systems aim to daily acquire and processes different health data, providing early detection of pathological signs and improving the treatment and the continuous monitoring of disease. Many commercial EMG and ECG sensors are available, and they are designed and created to satisfy different specifications. In this section, the review proposes a description of the common commercial biosignal acquisition systems for physiological monitoring. These systems have been chosen to be the most used devices in health practice presenting similar characteristics to be compared.

Biometrics Ltd offers different data acquisition systems to collect analog and digital data from various sensors and are available in wireless, portable and laboratory configurations. Wireless systems furnish total freedom of movement without being constrained by wires [104]. They are available in 2-, 4-, 8- and 16-channel configurations to acquire EMG signals by using surface, small and lightweight sensors, allowing muscle activity readings to be smooth and robust with a range of up to 30 m from its receiver. The main features of these types of sensors are (i) a bandwidth from 10 Hz to 250 Hz through to 10 Hz to 5000 Hz and (ii) a sensitivity for the peak to peak measurements ranging from +/− 60 mV to +/− 6000 mV [105]. Portable systems are comprehensive packages of sensors and instrumentation for static and dynamic measurements in a clinical setting, a research centre, or at any remote location such as an office, workplace or home. Biometrics offers three different versions of EMG sensors: (i) surface EMG sensors, (ii) wireless surface EMG sensors and (iii) surface EMG amplifier.

Biosignalsplux represents an advanced wireless toolkit to collect and analyze reliable and high-definition biosignal data [112]. It offers a set of cabled and wearable sensors. The biosignalsplux electromyography (EMG) sensor is a high-performance bipolar sensor with low noise for seamless muscle data acquisition. This sensor is designed to monitor muscular activity, and the bipolar configuration is ideal for uncompromised low-noise data acquisition. The raw data output provides medical-grade data enabling it to be used for advanced and highly accurate biomedical biomechanics and sports research. Its main features are (i) bipolar differential measurement, (ii) pre-conditioned analog output, (iii) high signal-to-noise ratio and (iv) medical-grade raw data output. It is also ready-to-use, and it is miniaturized. The wireless single-channel EMG device for real-time muscle sensing is muscleBAND. It is an integrated single-channel EMG sensor with a triaxial accelerometer and magnetometer for real-time acquisition of muscle activity and motion data with an integrated dual Bluetooth module. This sensor allows data acquisitions with up to 16-bit resolution at up to 1000 Hz sampling rate, with the internal battery providing enough power for continuous data streaming.

Delsys proposes complete wireless EMG-based solutions for monitoring human movement in research, clinical and educational settings [113]. These solutions are composed of (i) research, mobile and lite systems, (ii) EMG sensors, (iii) mobile software and (iv) software for devices integration. The most used EMG sensor is Trigno Avanti Sensor, which can capture muscle activity and movement data accurately. It is designed to work with all Trigno systems, and it is characterized by (i) patented technology, (ii) improved RF performance, (iii) cable-free design, (iv) selectable EMG bandwidth settings and (v) on-board signal processing. It also allows differential EMG input acquisition in a very small dimension and weight. Trigno Research+ is a high-performing device designed to make EMG signal detection reliable and easy, offering a full set of physiological and biomechanical monitoring tools to simplify complex research and provide the highest quality data. Proprietary RF protocol guarantees synchronization between all sensors and allows data transmission from Trigno wireless sensors to a Trigno base station. Table 3 reports the main characteristics of the selected wearable monitoring systems.

This entry is adapted from the peer-reviewed paper 10.3390/s21217172

This entry is offline, you can click here to edit this entry!