HMF is mainly converted from natural cellulose, glucose, or fructose. Among these processes, the most studied and generally the easiest is HMF from fructose. When the dehydration reaction starts from ketohexoses (such as fructose), it is more selective and efficient [
18]. Although from a stoichiometric point of view, the reaction looks quite simple, that is, the formal elimination of three water molecules from fructose, the design of catalysts that achieve high-yield HMF production is made difficult by the lack of understanding of the mechanistic aspects of fructose conversion to HMF [
19,
20].
Solid acid catalysts are very effective for the dehydration of fructose to HMF. Hou et al. investigated an efficient reaction system using sulfonated graphene oxide (SGO) as a solid acid catalyst for the production of HMF from fructose, where the HMF yield could reach 94% [
21]. Songo et al. investigated the TiO
2C solid acid catalyst for use in the catalytic dehydration of fructose to HMF. It was found that when using TiO
2C as the catalyst, dimethyl sulfoxide (DMSO) as the solvent, and a reaction temperature of 120 °C, the catalyst yield can reach as high as 90% after one hour of catalysis [
22]. Wang et al., using a sulfonated carbonaceous material as a solid acid catalyst for the dehydration of fructose to HMF in DMSO, achieved 96.1% conversion of fructose, and an HMF yield of 93.4% [
23]. Moreover, several mineral acids such as H
2SO
4, HCl, and H
3PO
4 have been used in the catalyzed dehydration of fructose to yield HMF [
24]. Ava-Biochem utilized the simple thermal route, heating fructose in the presence of aqueous H
2SO
4 to produce HMF, although low yields were obtained [
25]. Thus far, the selectivity and yield of reactions implemented in aqueous reaction systems are not comparable to those observed in aprotic high-boiling organic solvents such as DMSO, where the solvent also acts as the catalyst. Zhao et al. developed a sulfonated carbon sphere solid acid catalyst that produced 90% of HMF in DMSO as a solvent for 1.5 h at 160 °C with 100% conversion of fructose [
26]. Guo et al. investigated a lignin-derived carbonaceous catalyst to convert fructose into HMF under microwave irradiation in a mixture of ionic liquid and DMSO at 110 °C for 10 min with 98% conversion of fructose and an HMF yield of 84% [
27]. Hu et al. explored the use of a magnetic lignin-derived carbonaceous acid catalyst for the catalytic conversion of 100% fructose into 81.1% HMF in DMSO as a solvent [
28]. Ionic liquids (ILs) are also used as solvents, which are expensive, and it is very troublesome to recover HMF from high-boiling IL systems. Water formed during the dehydration reaction often deactivates ILs, and high-boiling point solvents such as DMF and DMSO are unable to resolve the drawbacks related to the separation issues over different bifunctional acid catalysts [
29].
To further explore the novel and cost-efficient technologies for selective dehydration of fructose to HMF, photocatalysis is a promising candidate for inhibiting the side reactions at high temperature [
30]. Fu et al. reported that Brønsted acidic Ag
@ZnFe
2O
4 NWs exhibit excellent photo-Fenton catalytic activity for the dehydration of fructose to HMF under visible light irradiation [
31].
Catalytic reaction systems such as solid acid catalysis, magnetic carbon-based catalysis, and photocatalysis all have problems such as low target product selectivity, difficulty in separating the product from the catalytic system, and many by-products.