5. Paper-Based Sensors for Environmental Quality Inspection
Similar to food safety monitoring, the sensitive detection of CO
2, phenols, and metal ions by paper-based sensors makes them handy tools for environmental quality inspections [
71,
72]. There is indeed a concern that most environmental inspection assays could not meet outdoor onsite detection due to the requirements of complicated instruments and a relative long detection time [
73]. With properties of low cost, easy operation, great portability, and easy disposal, paper-based sensors were found reliable to detect carbon dioxide [
33], airborne particulate [
74], volatile organic compounds [
75] in the air, heavy metals [
76], phosphates [
77], inorganic element ions [
78,
79,
80], nitrite [
81], and nicotine [
82] in the water.
Carbon dioxide (CO
2) plays a vital role in climate change, plant growth, and agricultural pest control. The detection of CO
2 is an essential prerequisite for humans to reasonably adapt to the evolution of nature and a requirement to protect the environment. Wang and coworkers designed a paper-based sensor for CO
2 detection with high accuracy based on the fluorescence assay, in which the fluorescence peak position shifted after the absorption of CO
2 with a detection limit of 5.7 ppm [
33].
Except for air quality monitoring, the inspection of the quality of water bodies in the environment is also of great significance. Recently, Noori and coworkers developed a paper-based sensor that could simultaneously detect multiple phenols in an environmental water sample within 15 min with a portable, disposable, and cost-effective novelty. Among which, in the presence of phenols, polyphenol oxidase that integrated onto the paper-catalyzed phenols, and then, the redox product would react with 3-methyl-2-benzothiazolinone hydrazine chromophore to deliver a phenol concentration-dependent color change (
Figure 5a). For more attention, the polyphenol oxidase was extracted from potato peels. The long storage time (30 days) even at room temperature of this enzyme-based biosensor made it much more reliable for site investigations and nonexpert operations [
34].
Figure 5. Paper-based sensors for an environmental quality inspection. (
a) Photograph images presented the color of the phenolic biosensor with varied catechol concentrations. 1 represented the control paper, and 2 represented the working paper. Reprinted/Adapted with permission from Ref. [
34]. Copyright 2020 Springer-Verlag GmbH Germany, part of Springer Nature. (
b) Schematical representation for the synthesis of the Fe
3+-sensitive paper-based sensor. Reprinted/Adapted with permission from Ref. [
83]. Copyright 2021 Elsevier B.V. (
c) Ag
+ quenched and serine restored the fluorescence of thiomalic acid-modified CdTe (TMA-capped CdTe). Reprinted/Adapted with permission from Ref. [
35] Copyright 2020 Elsevier B.V. (
d) The color-developing material were used for Cu
2+ and Hg
2+ measurements. Reprinted/Adapted with permission from Ref. [
84]. Copyright 2017 American Chemical Society and Division of Chemical Education, Inc. California, America. (
e) Portable three-dimensional paper-based sensor for simultaneous Cu
2+ and Hg
2+ detection: The sample filter processing mat (
1), detection mat (
2), and fluorescence emission of the detection mat with the presence of Cu
2+ and Hg
2+ (
3). Reprinted/Adapted with permission from Ref. [
85]. Copyright 2017 Elsevier B.V.
Despite the phenols, toxic and nonbiodegradable heavy metals are also a huge hazard that can eventually accumulate in human bodies through the bioaccumulation of the ecological system. This will lead to the heavy damage of organs or disorder of the nervous system of humans. Currently, colorimetric, fluorescent, electrochemical, and chemiluminescent paper-based sensors proved their practicability in sensing heavy metals [
86]. Yu’s team designed a type of Fe
3+-sensitive metal–organic framework nanocrystal material for fluorescence-based Fe
3+ detection (
Figure 5b) [
83]. Among which, the fluorescence of the nanocrystal was quenched after the introduction of Fe
3+ due to the interactions between Fe
3+ and hydroxy or carboxylic acid oxygen atoms of the nanocrystal material. With this sensor, the researchers could assess the Fe
3+ concentration in the drinking water with a low detection limit (1 μM). Chen and coworkers developed a paper-based sensor for the selective detection of Ag
+ in human plasma, bovine serum, lake water, and tea water [
35]. Interestingly, researchers proved that the sensor’s fluorescence was recovered with the additional introduction of serine after Ag
+-induced fluorescence quenching due to the stronger binding between serine and Ag
+ (
Figure 5c).
Notably, Zhou and coworkers delivered a paper-based sensor that detected Cu
2+ with a ratiometric property [
36]. The ratio detection in that strategy was established by integrating Cu
2+-sensitive and Cu
2+-insensitive dyes P2017 and B001 onto the sensor. During detection, the fluorescence of P2017 decreased with the Cu
2+ addition. In contrast, the fluorescence of B001 showed resistance to Cu
2+ and was stably maintained. Superiorly, the ratio-based strategy significantly enhanced the signal-to-noise ratio in the background and greatly eliminated the interference of photobleaching due to the self-calibration effect. Accordingly, the sensor showed an ultra-low detection limit of 2.4 nM. Moreover, it was found that both Cu
2+ and Hg
2+ could interfere with the fluorescence of one single fluorophore (
Figure 5d) [
84]. Based on the quantum dot Cu
2+- and Hg
2+-sensitive fluorescence, a novel three-dimensional paper-based sensor was developed with high portability and admirable sensitivity (
Figure 5e) [
85]. Those paper-based sensors devoted to evaluating heavy metal ions would significantly promote environment inspection with better efficiency and convenience than space-occupied laboratory instruments concerning heavy metal pollution in vast wild fields.
1. Khorablou, Z.; Shahdost-fard, F.; Razmi, H.; Yola, M.L.; Karimi-Maleh, H. Recent advances in developing optical and elec-
trochemical sensors for analysis of methamphetamine: A review. Chemosphere 2021, 278, 130393. [CrossRef]
2. Meena, K.V.; Sankar, A.R. Biomedical Catheters with Integrated Miniature Piezoresistive Pressure Sensors: A Review. IEEE Sens.
J. 2021, 21, 10241–10290. [CrossRef]
3. Fuh, Y.K.; Wang, B.S. Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of
human gesture recognition. Nano Energy 2016, 30, 677–683. [CrossRef]
4. Singh, A.T.; Lantigua, D.; Meka, A.; Taing, S.; Pandher, M.; Camci-Unal, G. Paper-Based Sensors: Emerging Themes and
Ap-plications. Sensors 2018, 18, 2838. [CrossRef]
5. White, D.; Keramane, M.; Capretta, A.; Brennan, J.D. A paper-based biosensor for visual detection of glucose-6-phosphate
dehydrogenase from whole blood. Analyst 2020, 145, 1817–1824. [CrossRef]
6. Choi, J.R.; Hu, J.; Tang, R.; Gong, Y.; Feng, S.; Ren, H.; Wen, T.; Li, X.; Abas, W.A.B.W.; Pingguan-Murphy, B.; et al. An inte-grated
paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 2016, 16, 611–621. [CrossRef]
7. Alkasir, R.S.J.; Rossner, A.; Andreescu, S. Portable Colorimetric Paper-Based Biosensing Device for the Assessment of Bisphenol
A in Indoor Dust. Environ. Sci. Technol. 2015, 49, 9889–9897. [CrossRef]
8. Ferreira, D.C.M.; Giordano, G.F.; Soares, C.C.S.P.; de Oliveira, J.F.A.; Mendes, R.K.; Piazzetta, M.H.; Gobbi, A.L.; Cardoso, M.B.
Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta 2015, 141, 188–194. [CrossRef]
9. Ming, T.; Luo, J.; Liu, J.; Sun, S.; Xing, Y.; Wang, H.; Xiao, G.; Deng, Y.; Cheng, Y.; Yang, Z.; et al. Paper-based microfluidic
aptasensors. Biosens. Bioelectron. 2020, 170, 112649. [CrossRef]
10. Tai, H.; Duan, Z.; Wang, Y.; Wang, S.; Jiang, Y. Paper-Based Sensors for Gas, Humidity and Strain Detections: A Review. ACS
Appl. Mater. Interfaces 2020, 12, 31037–31053. [CrossRef]
11. Wang, T.; Reid, R.C.; Minteer, S.D. A Paper-based Mitochondrial Electrochemical Biosensor for Pesticide Detection. Electroa-nalysis
2016, 28, 854–859. [CrossRef]
12. Tian, T.; Liu, H.; Li, L.; Yu, J.; Ge, S.; Song, X.; Yan, M. Paper-based biosensor for noninvasive detection of epidermal growth
factor receptor mutations in non-small cell lung cancer patients. Sens. Actuators B 2017, 251, 440–445. [CrossRef]
13. Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M.R. Paper based colorimetric detection of miR-NA-21
using Ag/Pt nanoclusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117529. [CrossRef]
14. Kumar, S.; Kumar, S.; Srivastava, S.; Yadav, B.K.; Lee, S.H.; Sharma, J.G.; Doval, D.C.; Malhotra, B.D. Reduced graphene oxide
modified smart conducting paper for cancer biosensor. Biosens. Bioelectron. 2015, 73, 114–122. [CrossRef] [PubMed]
15. Ji, S.; Lee, M.; Kim, D. Detection of early stage prostate cancer by using a simple carbon nanotube@paper biosensor. Biosens.
Bioelectron. 2018, 102, 345–350. [CrossRef] [PubMed]
16. Weaver, A.A.; Halweg, S.; Joyce, M.; Lieberman, M.; Goodson, H.V. Incorporating yeast biosensors into paper-based analytical
tools for pharmaceutical analysis. Anal. Bioanal. Chem. 2015, 407, 615–619. [CrossRef]
17. Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Hoang, T.L.; Nguyen, H.P.; Chailapakul, O.; Kalcher, K. Non-enzymatic electro-chemical
detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite.
Biosens. Bioelectron. 2018, 102, 113–120. [CrossRef]
18. Zhu, P.; Kuang, Y.; Wei, Y.; Li, F.; Ou, H.; Jiang, F.; Chen, G. Electrostatic self-assembly enabled flexible paper-based humidity
sensor with high sensitivity and superior durability. Chem. Eng. J. 2020, 404, 127105. [CrossRef]
19. Tao, L.; Zhang, K.; Tian, H.; Liu, Y.; Wang, D.; Chen, Y.; Yang, Y.; Ren, T. Graphene-Paper Pressure Sensor for Detecting Human
Motions. ACS Nano 2017, 11, 8790–8795. [CrossRef]
20. Long, Y.; He, P.; Xu, R.; Hayasaka, T.; Shao, Z.; Zhong, J.; Lin, L. Molybdenum-carbide-graphene composites for paper-based
strain and acoustic pressure sensors. Carbon 2020, 157, e594–e601. [CrossRef]
21. Wang, C.; Hou, X.; Cui, M.; Yu, J.; Fan, X.; Qian, J.; He, J.; Geng, W.; Mu, J.; Chou, X. An ultra-sensitive and wide measuring range
pressure sensor with paper-based CNT film/interdigitated structure. Sci. China Mater. 2019, 63, 403–412. [CrossRef]
22. Liu, L.; Jiao, Z.; Zhang, J.; Wang, Y.; Zhang, C.; Meng, X.; Jiang, X.; Niu, S.; Han, Z.; Ren, L. Bioinspired, Superhydrophobic,
and Paper-Based Strain Sensors for Wearable and Underwater Applications. ACS Appl. Mater. Interfaces 2021 , 13, 1967–1978.
[CrossRef] [PubMed]
23. Li, S.; Pan, N.; Zhu, Z.; Li, R.; Li, B.; Chu, J.; Li, G.; Chang, Y.; Pan, T. All-in-One Iontronic Sensing Paper. Adv. Funct. Mater. 2019 ,
29, 1807343. [CrossRef]
24. Tian, R.; Li, Y.; Bai, J. Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical
detection of microRNAs. Anal. Chim. Acta 2019, 1058, e89–e96. [CrossRef] [PubMed]
25. Wang, H.; Jian, Y.; Kong, Q.; Liu, H.; Lan, F.; Liang, L.; Ge, S.; Yu, J. Ultrasensitive electrochemical paper-based biosensor for
microRNA via strand displacement reaction and metal-organic frameworks. Sens. Actuators B 2018, 257, 561–569. [CrossRef]
26. Lv, S.; Tang, Y.; Zhang, K.; Tang, D. Wet NH 3 -Triggered NH 2 -MIL-125(Ti) structural switch for visible fluorescence immunoassay
impregnated on paper. Anal. Chem. 2018, 90, 14121–14125. [CrossRef] [PubMed]
27. Calabria, D.; Caliceti, C.; Zangheri, M.; Mirasoli, M.; Simoni, P.; Roda, A. Smartphone–based enzymatic biosensor for oral fluid
L-lactate detection in one minute using confined multilayer paper reflectometry. Biosens. Bioelectron. 2017 , 94, 124–130. [CrossRef]
[PubMed]
Sensors 2021, 21, 5998 20 of 22
28. Leonor, G.; Novell, M.; Blondeau, P.; Andrade, F.J. A disposable, simple, fast and low-cost paper-based biosensor and its
ap-plication to the determination of glucose in commercial orange juices. Food Chem. 2018, 265, 64–69. [CrossRef]
29. Huang, X.; Zhou, Y.; Ding, L.; Yu, G.; Leng, Y.; Lai, W.; Xiong, Y.; Chen, X. Supramolecular Recognition-Mediated Lay-er-by-Layer
Self-Assembled Gold Nanoparticles for Customized Sensitivity in Paper-Based Strip Nanobiosensors. Small 2019 , 15, 1903861.
[CrossRef]
30. Nantaphol, S.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Boron Doped Diamond Paste Electrodes for
Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2017, 89, 4100–4107. [CrossRef]
31. Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A paper-based nanomodified electrochemical biosensor for ethanol detection in
beers. Anal. Chim. Acta 2017, 960, 123–130. [CrossRef]
32. Mahato, K.; Chandra, P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image col-
orimetry integrated with smartphone. Biosens. Bioelectron. 2019, 128, 9–16. [CrossRef]
33. Wang, H.; Vagin, S.I.; Rieger, B.; Meldrum, A. An Ultrasensitive Fluorescent Paper-Based CO 2 Sensor. ACS Appl. Mater. In-terfaces
2020, 12, 20507–20513. [CrossRef] [PubMed]
34. Noori, R.; Perwez, M.; Mazumder, J.A.; Sardar, M. Development of low-cost paper-based biosensor of polyphenol oxidase for
detection of phenolic contaminants in water and clinical samples. Environ. Sci. Pollut. Res. 2020 , 27, 30081–30092. [CrossRef]
[PubMed]
35. Chen, H.; Hu, O.; Fu, H.; Fan, Y.; Xu, L.; Meng, Q.; Zhang, L.; Lan, W.; Wu, C.; Tang, S.; et al. Paper-based sensor for visual
detection of Ag + based on a “turn-off-on” fluorescent design. Microchem. J. 2020, 157, 104887. [CrossRef]
36. Zhou, J.Q.; Wu, X.; Chen, X.; Qin, G.; Zhang, M.; Wu, H.; Fang, Y.; Lu, H.; Yu, L.; Li, L.; et al. Two-component ratiometric sensor
for Cu 2+ detection on paper-based device. Anal. Bioanal. Chem. 2019, 411, 6165–6172. [CrossRef] [PubMed]
37. Duan, Z.; Jiang, Y.; Yan, M.; Wang, S.; Yuan, Z.; Zhao, Q.; Sun, P.; Xie, G.; Du, X.; Tai, H. Facile, Flexible, Cost-Saving, and
Environment-Friendly Paper-Based Humidity Sensor for Multifunctional Applications. ACS Appl. Mater. Interfaces 2019 , 11,
21840–21849. [CrossRef]
38. Castro, C.; Rosillo, C.; Tsutsui, H. Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic
channels. Microfluid Nanofluid 2017, 21, 21. [CrossRef]
39. Li, Z.; Wang, J.; Xu, Y.; Shen, M.; Duan, C.; Dai, L.; Ni, Y. Green and sustainable cellulose-derived humidity sensors: A review.
Carbohydr. Polym. 2021, 270, 118385. [CrossRef]
40. Shen, L.-L.; Zhang, G.-R.; Etzold, B.J.M. Paper-Based Microfluidics for Electrochemical Applications. ChemElectroChem 2020 , 7,
10–30. [CrossRef]
41. Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens.
Actuators B Chem. 2021, 336, 129681. [CrossRef]
42. Xu, Y.; Fei, Q.; Page, M.; Zhao, G.; Ling, Y.; Stoll, S.B.; Yan, Z. Paper-based wearable electronics. iScience 2021 , 24, 102736.
[CrossRef]
43. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, V.S.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect
in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef]
44. Wang, Y.; Zhou, W.; Cao, K.; Hu, X.; Gao, L.; Lu, Y. Architectured graphene and its composites: Manufacturing and structural
applications. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106177. [CrossRef]
45. Yang, T.; Mativetsky, J.M. Paper-Based Mechanical Sensors Enabled by Folding and Stacking. ACS Appl. Mater. Interfaces 2019 , 11,
26339–26345. [CrossRef] [PubMed]
46. Li, Q.; Liu, H.; Zhang, S.; Zhang, D.; Liu, X.; He, Y.; Mi, L.; Zhang, J.; Liu, C.; Shen, C.; et al. Superhydrophobic Electrically
Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS Appl. Mater.
Interfaces 2019, 11, 21904–21914. [CrossRef]
47. Mao, K.; Min, X.; Zhang, H.; Zhang, K.; Cao, H.; Guo, Y.; Yang, Z. Paper-based microfluidics for rapid diagnostics and drug
delivery. J. Control. Release 2020, 322, 187–199. [CrossRef] [PubMed]
48. Caspersson, T.; Schultz, J. Nucleic Acid Metabolism of the Chromosomes in Relation to Gene Reproduction. Nature 1938 , 142,
294–295. [CrossRef]
49. Hisae, T.-K.; Naoki, S. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids
Res. 2021, 49, 7839–7855. [CrossRef]
50. Gilboa, T.; Garden, P.M.; Cohen, L. Single-molecule analysis of nucleic acid biomarkers—A review. Anal. Chim. Acta 2020 , 1115,
61–85. [CrossRef]
51. Zhao, Y.; Zuo, X.; Li, Q.; Chen, F.; Chen, Y.-R.; Deng, J.; Han, D.; Hao, C.; Huang, F.; Huang, Y.; et al. Nucleic acids analysis. Sci.
China Chem. 2021, 64, 171–203. [CrossRef] [PubMed]
52. Liu, X.; Wang, P.; Zhang, C.; Ma, Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of
lung cancer. Oncotarget 2017, 8, 50209–50220. [CrossRef] [PubMed]
53. Lin, H.; Wang, X.; Wu, J.; Li, H.; Li, F. Equipment-Free and Visualized Biosensor for Transcription Factor Rapid Assay Based on
Dopamine-Functionalized Cellulose Paper. J. Mater. Chem. B 2019, 7, 5461–5464. [CrossRef] [PubMed]
54. Pozuelo, M.; Blondeau, P.; Novell, M.; Andrade, F.J.; Rius, F.X.; Riu, J. Paper-based chemiresistor for detection of ultralow
concentrations of protein. Biosens. Bioelectron. 2013, 49, 462–465. [CrossRef]
Sensors 2021, 21, 5998 21 of 22
55. Fischer, C.; Fraiwan, A.; Choi, S. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring. Biosens.
Bioelectron. 2016, 79, 193–197. [CrossRef]
56. Gartia, M.R.; Misra, S.K.; Ye, M.; Schwartz-Duval, A.; Plucinski, L.; Zhou, X.; Kellner, D.; Labriola, L.T.; Pan, D. Point-of-service,
quantitative analysis of ascorbic acid in aqueous humor for evaluating anterior globe integrity. Sci. Rep. 2015 , 5, 16011. [CrossRef]
57. Duyen, T.T.M.; Matsuura, H.; Ujiie, K.; Muraoka, M.; Harada, K.; Hirata, K. Paper-based colorimetric biosensor for antibiotics
inhibiting bacterial protein synthesis. J. Biosci. Bioeng. 2017, 123, 96–100. [CrossRef]
58. Wagner, D.R.; Heyward, V.H. Measures of body composition in blacks and whites: A comparative review. Am. J. Clin. Nutr. 2000 ,
71, 1392–1402. [CrossRef] [PubMed]
59. Verhelst, X.; Dias, A.M.; Colombel, J.-F.; Vermeire, S.; Vlierberghe, H.V.; Callewaert, N.; Pinho, S.S. Protein Glycosylation as
a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020 , 158,
95–110. [CrossRef]
60. Zhang, Y.; Deng, Y.; Yang, X.; Xue, H.; Lang, Y. The Relationship between Protein S-Nitrosylation and Human Diseases: A Review.
Neurochem. Res. 2020, 45, 2815–2827. [CrossRef]
61. Ki, H.; Jang, H.; Oh, J.; Han, G.; Lee, H.; Kim, S.; Kim, M. Simultaneous Detection of Serum Glucose and Glycated Albumin on a
Paper-Based Sensor for Acute Hyperglycemia and Diabetes Mellitus. Anal. Chem. 2020, 92, 11530–11534. [CrossRef]
62. Parrilla, M.; Cánovas, R.; Andrade, F.J. Paper-based enzymatic electrode with enhanced potentiometric response for moni-toring
glucose in biological fluids. Biosens. Bioelectron. 2017, 90, 110–116. [CrossRef]
63. Huang, P.; Hong, C.P.; Zhu, J.F.; Chen, T.; Chan, C.; Ko, Y.; Lin, T.; Pan, Z.; Sun, N.; Wang, Y.; et al. Ag@Au nanoprisms-metal
organic frameworks-based paper for extending glucose sensing range in human serum and urine. Dalton Trans. 2017 , 46,
6985–6993. [CrossRef] [PubMed]
64. Nunez-Bajo, E.; Fernández-Abedul, M.T. Paper-based platforms with coulometric readout for ascorbic acid determination in fruit
juices. Analyst 2020, 145, 3431–3439. [CrossRef] [PubMed]
65. Sarada, B.V.; Rao, T.N.; Tryk, D.A.; Fujishima, A. Electrochemical Oxidation of Histamine and Serotonin at Highly Bo-ron-Doped
Diamond Electrodes. Anal. Chem. 2000, 72, 1632–1638. [CrossRef] [PubMed]
66. Anh, H.Q.; Le, T.P.Q.; Le, N.D.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al.
Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources,
potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. [CrossRef] [PubMed]
67. Magureanu, M.; Bilea, F.; Bradu, C.; Hong, D. A review on non-thermal plasma treatment of water contaminated with anti-biotics.
J. Hazard. Mater. 2021, 417, 125481. [CrossRef] [PubMed]
68. Mentana, A.; Palermo, C.; Nardiello, D.; Quinto, M.; Centonze, D. Simultaneous and accurate real time monitoring of glucose and
ethanol in alcoholic drinks, must, and biomass by a dual amperometric biosensor. J. Agric. Food Chem. 2013 , 61, 61–68. [CrossRef]
69. Xu, J.; Chen, X.; Khan, H.; Yang, L. A dual-readout paper-based sensor for onsite detection of penicillinase with a smartphone.
Sens. Actuators B Chem. 2021, 335, 129707. [CrossRef]
70. Hidayat, M.A.; Maharani, D.A.; Purwanto, D.A.; Kuswandi, B.; Yuwono, M. Simple and Sensitive Paper-based Colorimetric
Biosensor for Determining Total Polyphenol Content of the Green Tea Beverages. Biotechnol. Bioprocess Eng. 2020 , 25, 255–263.
[CrossRef]
71. Zhang, D.; Li, C.; Ji, D.; Wang, Y. Paper-Based Microfluidic Sensors for Onsite Environmental Detection: A Critical Review. Crit.
Rev. Anal. Chem. 2021, 1886900. [CrossRef]
72. Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y.C.; Lu, X.; Xu, J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioe-lectron.
2016, 83, 256–266. [CrossRef] [PubMed]
73. Dabhade, A.; Jayaraman, S.; Paramasivan, B. Colorimetric paper bioassay by horseradish peroxidase for the detection of cat-echol
and resorcinol in aqueous samples. Prep. Biochem. Biotechnol. 2020, 50, 849–856. [CrossRef] [PubMed]
74. Dungchai, W.; Sameenoi, Y.; Chailapakul, O.; Volckens, J.; Henry, C.S. Determination of aerosol oxidative activity using silver
nanoparticle aggregation on paper-based analytical devices. Analyst 2013, 138, 6766–6773. [CrossRef] [PubMed]
75. Li, Y.; Liang, F. Progress in Paper-based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [CrossRef]
76. Wang, X.; Sun, J.; Tong, J.; Guan, X.; Bian, C.; Xia, S. Paper-Based Sensor Chip for Heavy Metal Ion Detection by SWSV.
Mi-cromachines 2018, 9, 150. [CrossRef]
77. Cinti, S.; Talarico, D.; Palleschi, G.; Moscone, D.; Arduini, F. Novel reagentless paper-based screen-printed electrochemical sensor
to detect phosphate. Anal. Chim. Acta 2016, 919, 78–84. [CrossRef]
78. Yakoh, A.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and selective paper-based colorimetric sensor for determi-nation
of chloride ion in environmental samples using label-free silver nanoprisms. Talanta 2018, 178, 134–140. [CrossRef] [PubMed]
79. Yen, Y.; Lee, K.; Lin, C.; Zhang, S.; Wang, C.; Liu, T. Portable Nanohybrid Paper-Based Chemiresistive Sensor for Free Chlorine
Detection. ACS Omega 2020, 5, 25209–25215. [CrossRef] [PubMed]
80. Maruthupandi, M.; Thiruppathi, D.; Vasimalai, N. One minute synthesis of green fluorescent copper nanocluster: The prep-aration
of smartphone aided paper-based kit for onsite monitoring of nanomolar level mercury and sulfide ions in environ-mental
samples. J. Hazard. Mater. 2020, 392, 122294. [CrossRef]
81. Liu, Y.; Hsu, C.; Lu, B.; Lin, P.; Ho, M. Determination of nitrite ions in environment analysis with a paper-based microfluidic
device. Dalton Trans. 2018, 47, 14799–14807. [CrossRef] [PubMed]