In public transport operations, vehicles tend to bunch together due to the instability of passenger demand and traffic conditions. Fluctuation of the expected waiting times of passengers at bus stops due to bus bunching is perceived as service unreliability and degrades the overall quality of service. For assessing the performance of high-frequency bus services, transportation authorities monitor the daily operations via Transit Management Systems (TMS) that collect vehicle positioning information in near real-time. This work explores the potential of using Automated Vehicle Location (AVL) data from the running vehicles for generating bus schedules that improve the service reliability and conform to various regulatory constraints. The computer-aided generation of optimal bus schedules is a tedious task due to the nonlinear and multi-variable nature of the bus scheduling problem. For this reason, this work develops a two-level approach where (i) the regulatory constraints are satisfied and (ii) the waiting times of passengers are optimized with the introduction of an evolutionary algorithm. This work also discusses the experimental results from the implementation of such an approach in a bi-directional bus line operated by a major bus operator in northern Europe.
Introduction
During the scheduling phase of bus services, a set of conflicting objectives are optimized such as the operational costs and the waiting times of passengers at stops. However, due to many exogenous factors, such as road traffic and spatio-temporal passenger demand variations, the optimal schedule does not perform as anticipated, resulting in bus bunching phenomena. This unreliability leads to passenger dissatisfaction and to additional operational costs for the service provider. Therefore, several research works related to bus bunching have tried to address the service reliability problem (Gkiotsalitis and Cats [
1], Chapman and Michel [
2], Pilachowski [
3], Gkiotsalitis and Maslekar [
4]).
In several cities where the timetables of bus services are not strictly followed, a number of informal methods have been utilized for maintaining the service reliability. In Chile for instance, drivers are assisted by an informal group of independent information intermediaries, known as “Sapos”, who record the arrival time of buses and inform the subsequent drivers in order to help them maintain uniform headways (Johnson et al. [
5]). These labor-intensive practices of maintaining reliability in bus operations become inefficient when the frequency of trips is very high. This study focuses specifically on such high frequency services with dispatching headways between consecutive bus trips of less than 15 min since several studies (Randall et al. [
6], Welding [
7]) have shown that the arrivals of passengers at stops are not random and are tailored to the scheduled arrival times of bus trips in the case of low frequency services.
The advent of new monitoring technologies such as in-vehicle telematics and automated fare collection systems has revolutionized the monitoring capabilities of the transit service operations. Nowadays, the monitoring capabilities of the passenger waiting times at stops have been increased and, given this new information, bus operators strive to improve the reliability of their daily operations.
In past years, several methodologies were developed for enhancing the reliability of transit services. Eberlein [
8] explained three ways of controlling the headways: (a) Station-control strategies which consist of (i) holding a bus at a stop and (ii) stop-skipping; (b) Interstation-control strategies consisting of speed control and traffic signal priorities and (c) On-demand vehicle addition strategies that add vehicles at some specific points of the bus routes. From the above-mentioned strategies, the first strategy that includes holding and stop skipping is considered to be the most important methodology.
To further explain the bus holding control strategy, a bus trip can be held at specific critical stops (known as control points or time points) in an effort to maintain even headways. In several works, such as the work of Hickman [
9], bus holding is proposed as a real-time strategy to avoid bus bunching. The typical objective of a bus holding strategy is to ensure that the waiting times of passengers at stops do not vary significantly from the planned ones. However, recent works, such as the work of Bartholdi and Eisenstein [
10], focused on maintaining even headways between bus trips at the locations of the control point stops without adhering to the planned headway values. Although bus holding can be proved beneficial to bus operations, several works have proposed to introduce limitations on holding strategies because extensive holding of bus trips can cause inconvenience to passengers, overcrowding at stops and “schedule sliding” if the bus trips are postponed due to holding (Delgado et al. [
11]).
Public transport authorities use the passenger waiting times at stops to evaluate the performance of the operations in the case of high frequency services. In contrast to the low frequency services where the main objective is the service punctuality because passengers try to synchronize their arrival times at stops with the scheduled arrival times of bus trips, in high frequency services the passenger arrival times at stops are random (Welding [
7]) and the waiting times of passengers at stops can be directly linked to the headways between consecutive trips (they are considered equal to half the value of the headways). O’Flaherty and Mancan [
12] studied the relationship between bus headways and average passenger waiting times in peak and off-peak traffic conditions. The holding problem has been examined as a multi-objective problem in other works such as Barnett [
13], where a holding strategy of individual buses at control stops tries to minimize at the same time the passenger waiting times and the delay of on-board passengers. Turnquist [
14] studied in more detail the effects of schedule reliability and bus frequency on the waiting times experienced by the passengers. In addition, the stochastic nature of passenger waiting times was considered in the work of Gkiotsalitis and Maslekar [
15], where a stochastic search and branch hopping/merging algorithm was used for reducing the excess waiting times of passengers.
Apart from bus holding, a variety of other solution strategies have been proposed for improving the bus operations. Adherence to the planned timetables was proposed by Bates et al. [
16] and Daganzo [
17] where the latter worked on an adaptive control scheme that focused on achieving target headways by adjusting the bus cruising speed. In such a scheme, when a bus arrives at a control point its headway is compared to a pre-specified target headway value for performing the appropriate adjustment. Other works, such as Friedman [
18], have focused only on the dispatching times of bus trips by developing mathematical models to optimize the departure times of buses.
The above-mentioned works focus on specific problems such as the (i) timetable design and the (ii) real-time control. This paper focuses on the first problem of timetable design for high frequency services with a specific target of reducing the passenger waiting time fluctuations and satisfying the resource limitations in terms of fleet size and regulatory constraints. Regulatory constraints such as bus driver meal breaks, layover times and dispatching headway bounds are interconnected and any change in the bus timetables can lead to violations of different constraints. Satisfying the regulatory constraints and minimizing the Excess Waiting Times (EWT) of passengers at control point stops turns the timetabling problem into a discrete, constrained optimization problem which does not exhibit a polynomial computational complexity. For this reason, this paper presents an evolutionary algorithm for exploring the vast solution space under a set of constraint limitations. The performance of the proposed algorithm, the improvement in the timetable design and the improvement of passengers waiting times at stops in real operations under different assumptions of travel time variations are tested in a bi-directional bus line from a major bus operator in northern Europe.
Abbreviations
The following abbreviations are used in this manuscript:
AVL |
Automated Vehicle Location |
EA |
Evolutionary Algorithm |
EWT |
Excess Waiting Time |
GA |
Genetic Algorithm |
TMS |
Transit Management Systems |
TT |
Travel Time |
References
- Gkiotsalitis, K.; Cats, O. Reliable frequency determination: Incorporating information on service uncertainty when setting dispatching headways. Transp. Res. Part C Emerg. Technol. 2018, 88, 187–207. [Google Scholar] [CrossRef]
- Chapman, R.; Michel, J. Modelling the tendency of buses to form pairs. Transp. Sci. 1978, 12, 165–175. [Google Scholar] [CrossRef]
- Pilachowski, J.M. An Approach to Reducing Bus Bunching; University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Gkiotsalitis, K.; Maslekar, N. Dynamic Bus Operations Optimization with REFLEX. NEC Tech. J. 2016, 11, 1. [Google Scholar]
- Johnson, R.M.; Reiley, D.H.; Muñoz, J.C. “The War for the Fare”: How Driver Compensation Affects Bus System Performance; Technical Report; National Bureau of Economic Research: Cambridge, MA, USA, 2005. [Google Scholar]
- Randall, E.R.; Condry, B.J.; Trompet, M.; Campus, S.K. International bus system benchmarking: Performance measurement development, challenges, and lessons learned. In Proceedings of the Transportation Research Board 86th Annual Meeting, Washington, DC, USA, 21–25 January 2007. [Google Scholar]
- Welding, P. The instability of a close-interval service. Oper. Res. Soc. 1957, 8, 133–142. [Google Scholar] [CrossRef]
- Eberlein, X.J. Real-time control strategies in transit operations: Models and analysis. Transp. Res. Part A 1997, 1, 69–70. [Google Scholar]
- Hickman, M.D. An analytic stochastic model for the transit vehicle holding problem. Transp. Sci. 2001, 35, 215–237. [Google Scholar] [CrossRef]
- Bartholdi, J.J.; Eisenstein, D.D. A self-coördinating bus route to resist bus bunching. Transp. Res. Part B Methodol. 2012, 46, 481–491. [Google Scholar] [CrossRef]
- Delgado, F.; Munoz, J.C.; Giesen, R. How much can holding and/or limiting boarding improve transit performance? Transp. Res. Part B Methodol. 2012, 46, 1202–1217. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Mancan, D. Bus passenger waiting times in central areas. Traffic Eng. Control 1900, 11, 419–421. [Google Scholar]
- Barnett, A. On controlling randomness in transit operations. Transp. Sci. 1974, 8, 102–116. [Google Scholar] [CrossRef]
- Turnquist, M.A. A model for investigating the effects of service frequency and reliability on bus passenger waiting times. Transp. Res. Rec. 1978, 663, 70–73. [Google Scholar]
- Gkiotsalitis, K.; Maslekar, N. Improving Bus Service Reliability with Stochastic Optimization. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), Las Palmas, Spain, 15–18 September 2015; pp. 2794–2799. [Google Scholar]
- Bates, J.; Polak, J.; Jones, P.; Cook, A. The valuation of reliability for personal travel. Transp. Res. Part E Logist. Transp. Rev. 2001, 37, 191–229. [Google Scholar] [CrossRef]
- Daganzo, C.F. A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons. Transp. Res. Part B Methodol. 2009, 43, 913–921. [Google Scholar] [CrossRef]
- Friedman, M. A mathematical programming model for optimal scheduling of buses’ departures under deterministic conditions. Transp. Res. 1976, 10, 83–90. [Google Scholar] [CrossRef]
- Yan, S.; Chen, H.L. A scheduling model and a solution algorithm for inter-city bus carriers. Transp. Res. Part A Policy Pract. 2002, 36, 805–825. [Google Scholar] [CrossRef]
- Niu, H.; Tian, X. An approach to optimize the departure times of transit vehicles with strict capacity constraints. Math. Probl. Eng. 2013, 2013. [Google Scholar] [CrossRef]
- Gkiotsalitis, K.; Cats, O. Exact Optimization of Bus Frequency Settings Considering Demand and Trip Time Variations. In Proceedings of the Transportation Research Board 96th Annual Meetings, No: 17-01871, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Ceder, A.A.; Hassold, S.; Dano, B. Approaching even-load and even-headway transit timetables using different bus sizes. Public Transp. 2013, 5, 193–217. [Google Scholar] [CrossRef]
- Sun, D.J.; Xu, Y.; Peng, Z.R. Timetable optimization for single bus line based on hybrid vehicle size model. J. Traffic Transp. Eng. 2015, 2, 179–186. [Google Scholar] [CrossRef]
- Chen, Q. Global optimization for bus line timetable setting problem. Discret. Dyn. Nat. Soc. 2014, 2014. [Google Scholar] [CrossRef]
- Gkiotsalitis, K.; Stathopoulos, A. Demand-responsive public transportation re-scheduling for adjusting to the joint leisure activity demand. Int. J. Transp. Sci. Technol. 2016, 5, 68–82. [Google Scholar] [CrossRef]
- Gkiotsalitis, K.; Stathopoulos, A. Joint leisure travel optimization with user-generated data via perceived utility maximization. Transp. Res. Part C Emerg. Technol. 2016, 68, 532–548. [Google Scholar] [CrossRef]
- Shi, R.J.; Mao, B.H.; Ding, Y.; Bai, Y.; Chen, Y. Timetable optimization of rail transit loop line with transfer coordination. Discret. Dyn. Nat. Soc. 2016, 2016. [Google Scholar] [CrossRef]
- Cattaruzza, D.; Absi, N.; Feillet, D.; González-Feliu, J. Vehicle routing problems for city logistics. EURO J. Transp. Logist. 2017, 6, 51–79. [Google Scholar] [CrossRef]
- Du, T.C.; Li, E.Y.; Chou, D. Dynamic vehicle routing for online B2C delivery. Omega 2005, 33, 33–45. [Google Scholar] [CrossRef]
- Dueker, K.J.; Kimpel, T.J.; Strathman, J.G.; Callas, S. Determinants of bus dwell time. J. Public Transp. 2004, 7, 2. [Google Scholar]
- TfL Transport for London: Bus Routes and Borough Reports. Available online: https://www.tfl.gov.uk/forms/14144.aspx (accessed on 1 December 2017).
- LTA Land Transport Authority: Bus Service Reliability Framework. Available online: http://www.lta.gov.sg/data/apps/news/press/2014/20140124BSRF(final2)-Annex.pdf (accessed on 1 December 2017).
- Van Oort, N. Incorporating service reliability in public transport design and performance requirements: International survey results and recommendations. Res. Transp. Econ. 2014, 48, 92–100. [Google Scholar] [CrossRef]
- De-rong, T.; Jing, W.; Han-bo, L.; Xing-wei, W. The optimization of bus scheduling based on genetic algorithm. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011; pp. 1530–1533. [Google Scholar]
- Shrestha, A.; Mahmood, A. Improving Genetic Algorithm with Fine-Tuned Crossover and Scaled Architecture. J. Math. 2016, 2016. [Google Scholar] [CrossRef]
- Tsai, C.W.; Tseng, S.P.; Chiang, M.C.; Yang, C.S.; Hong, T.P. A high-performance genetic algorithm: Using traveling salesman problem as a case. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Dorbritz, R.; Lüthi, M.; Weidmann, U.; Nash, A. Effects of onboard ticket sales on public transport reliability. In Transportation Research Record: Journal of the Transportation Research Board; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2009; pp. 112–119. [Google Scholar]
- Hollander, Y.; Liu, R. Estimation of the distribution of travel times by repeated simulation. Transp. Res. Part C Emerg. Technol. 2008, 16, 212–231. [Google Scholar] [CrossRef]
- TfL Bus Routes & Borough Reports. Available online: https://tfl.gov.uk/forms/14144.aspx?borough=Barking+ (accessed on 1 December 2017).
- Lopez-Garcia, P.; Onieva, E.; Osaba, E.; Masegosa, A.D.; Perallos, A. A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 2016, 17, 557–569. [Google Scholar] [CrossRef]