Tendon and Mast Cells: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Subjects: Cell Biology
Contributor: , ,

Understanding the links between the tendon healing process, inflammatory mechanisms, and tendon homeostasis after tissue damage is crucial in developing novel therapeutics for human tendon disorders. The inflammatory mechanisms that are operative in response to tendon injury are not fully understood, but it has been suggested that inflammation occurring in response to nerve signaling, i.e., neurogenic inflammation, has a pathogenic role. In this review, we discuss the role of mast cells in the communication with peripheral nerves, and their emerging role in tendon healing and inflammation after injury.

  • Tendon, Tenocytes, Collagen, Mast cells

Tendon is a crucial component of the musculoskeletal system that connects muscle to bone and transmits force for the movement [11][12]. Tendon is a soft connective tissue and is predominately composed of water, which makes up 55–70% of the total tendon weight. The other major component of tendon is collagen, which represents about 60–85% of the dry weight of tendon [15]. In tendon architecture, fibrillar arrangement of triple-helical type I collagen molecules generates collagen fibers, which then combine to form fascicles and, ultimately, the tendon tissue. The type I collagen molecule contains two identical α1 chains and one α2 chain, which are encoded by col1a1 and col1a2, respectively [2]. The collagen fibrils are the fundamental force-transmitting element of tendon tissue, and are tightly arranged within the extracellular matrix. Type I collagen and associated extracellular matrix components are produced by tenocytes, which are fibroblast-like cells found between collagen fibers and in the surrounding of the endotenon [16]. Tendons also contain other cell types such as chondrocytes, vascular cells, synovial cells, tendon stem cells (TSCs) including mast cells. Tendon mast cells are in the normal state resident locally in the tendon tissue or in the loose connective tissue close to the paratenon, muscle–tendon junction, or bone–tendon junction [9]. However, during the tendon healing process, they may migrate to the injured site (tendon proper) following inflammation and nerve ingrowth [9][74]. In addition to tendon cells and collagen, other molecules like elastin and proteoglycans are also integral parts of the tendon [17]. There are two main markers of collagen metabolism: procollagen type III N-terminal propeptide (PIIINP) and procollagen type I N-terminal propeptide (PINP). Both have been used as early prediction markers for healing tendon and bone [18]. Procollagen type I and III are essential building blocks in all types of connective tissues, and PINP and PIIINP have been utilized as biomarkers to assess collagen metabolism in intact human Achilles tendons exposed to exercise and growth factor stimulation [18]

Mast cells are highly granulated hematopoietic cells derived from the bone marrow. They circulate in the blood as immature progenitor cells, after which they home into tissues where they mature under the influence of local growth factors such as stem cell factor [46][47][48][49]. In their mature state, mast cells are characterized by a remarkably high content of electron-dense secretory granules. These contain a plethora of preformed mediators, including serglycin proteoglycans, proteases (e.g., chymase, tryptase, and carboxypeptidase A3), biogenic amines (histamine, serotonin, and dopamine), lysosomal hydrolases, growth factors, and certain cytokines (e.g., tumor necrosis factor-α (TNF-α)) [50][51][52]. When mast cells are activated, they typically respond by degranulation, whereby the preformed mediators are released to the extracellular space. Mast cell activation also leads to the de novo synthesis of a range of other mediators, including additional growth factors, cytokines, chemokines, as well as various lipid-derived mediators such as platelet-activating factor, prostaglandins, and leukotrienes (see Figure 2 ) [52]. Mast cells can be activated through a variety of mechanisms. Of these, crosslinking of IgE molecules bound to their high affinity receptors (FcεRI) on the mast cell surface represents the classical mode of mast cell activation. However, mast cells can be activated through several alternative pathways, including complement, engagement of toll-like receptors, and ligation of Mas-related G-protein coupled receptor member X2 (MRGPRX2)[6][53][54][55][56].

Mast cells have been suggested to have a number of beneficial functions, e.g., in the context of bacterial and parasite infection, as well as in wound healing and in the defense against various toxins [57][58][59][60][61]. Conversely, mast cells have also been implicated as detrimental players in several pathological settings. Most notably, mast cells are strongly implicated in allergic disorders but there is also evidence supporting the contribution of mast cells in various autoimmune diseases, fibrosis, cancer, skin inflammation, and metabolic disorders [50][62][63][64][65][66][67][68][69]. In addition, there is emerging evidence suggesting that mast cells potentially could be involved in conditions associated with neurogenic inflammation [53][70][71][72][73]. In support of a functional nerve:mast cell communication, mast cells are frequently found in close association with nerve endings [71][72][73]. However, the mechanisms by which mast cells could respond to nerve signaling have been mostly elusive.

The close location of mast cells and peripheral nerve endings raises the possibility that mast cells can be activated by different neurotransmitters that may be released from peripheral nerves in response to tendon injury. Such neurotransmitters include substance P, glutamate, CGRP, and neurokinin A (NKA) [28][87][88]. In line with a potential role for neurological mechanisms in mast cell activation, mast cells are known to express several receptors for neurotransmitters, e.g., neurokinin 1 receptor (NK1; receptor for substance P) and calcitonin receptor-like receptor (receptor for CGRP) [89][90][91]. Mast cells also express MRGPRX2 [54], and it has been shown that MRGPRX2 can be a more relevant receptor for substance P than is NK1 [92]. Mast cells also express corticotropin-releasing hormone receptor-1 and activity-modifying protein 1 (RAMP1) [93][94]. Further, recent findings have revealed that mouse mast cells express various glutamate receptors [10] (see also below). Altogether, this suggests that mast cells have the capacity to respond to a wide range of neurotransmitters that can be secreted by nerve endings in the context of tendon injury. Such neurotransmitters could potentially activate mast cells, and could also activate other cells (e.g., macrophages, fibroblasts) expressing the corresponding neurotransmitter receptors. This can lead to the release of cytokines and other proinflammatory mediators that could contribute to the pathology of tendon injury [95][96][97][98]. Indeed, mast cells are known to respond to substance P stimulation by secreting monocyte chemoattractant protein-1 (MCP-1), TNF-ɑ, interleukin-8 (IL-8), IL-3, granulocyte–macrophage colony-stimulating factor, interferon-γ, and eotaxin [99][100]. Moreover, mast cell stimulation by CGRP and substance P causes the release of histamine from rat peritoneal mast cells [101] but does not activate human intestinal mast cells [102]. It has also been demonstrated that mast cells respond to glutamate by secreting proinflammatory cytokines and chemokines [10].

As discussed in this review, there is emerging evidence to suggest that mast cells can contribute to neurogenic inflammation and the inflammatory reaction that accompanies tendon healing. It is plausible that the cytokines/chemokines released through this mechanism may contribute, either directly or indirectly, to the modulation of tendon healing and inflammation in such settings.

 

This entry is adapted from the peer-reviewed paper 10.3390/cells9051134

References

  1. Sharma, P.; Maffulli, N. Tendinopathy and tendon injury: The future. Disabil. Rehabil. 2008, 30, 1733–1745.
  2. Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233.
  3. Galli, S.J.; Starkl, P.; Marichal, T.; Tsai, M. Mast cells and IgE in defense against venoms: Possible “good side” of allergy? J. Allergol. Int. 2016, 65, 3–15.
  4. Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 2004, 4, 787–799.
  5. Scott, A.; Lian, O.; Bahr, R.; Hart, D.A.; Duronio, V.; Khan, K.M. Increased mast cell numbers in human patellar tendinosis: Correlation with symptom duration and vascular hyperplasia. Br. J. Sports Med. 2008, 42, 753–757.
  6. Pingel, J.; Wienecke, J.; Kongsgaard, M.; Behzad, H.; Abraham, T.; Langberg, H.; Scott, A. Increased mast cell numbers in a calcaneal tendon overuse model. Scand J. Med. Sci. Sports 2013, 23, e353–e360.
  7. Alim, M.A.; Ackermann, P.W.; Eliasson, P.; Blomgran, P.; Kristiansson, P.; Pejler, G.; Peterson, M. Increased mast cell degranulation and co-localization of mast cells with the NMDA receptor-1 during healing after Achilles tendon rupture. Cell Tissue Res. 2017, 370, 451–460.
  8. Urist, M.; McLean, F. Accumulation of mast cells in endosteum of bones of calciumdeficient rats. Arch. Pathol. 1957, 63, 239–251.
  9. Ragipoglu, D.; Dudeck, A.; Haffner-Luntzer, M.; Voss, M.; Kroner, J.; Ignatius, A.; Fischer, V. The Role of Mast Cells in Bone Metabolism and Bone Disorders. Front. Immunol. 2020, 11, 163.
  10. Lazarus, B.; Messina, A.; Barker, J.E.; Hurley, J.V.; Romeo, R.; Morrison, W.A.; Knight, K.R. The role of mast cells in ischaemia–reperfusion injury in murine skeletal muscle. The J. Pathol. 2000, 191, 443–448.
  11. Nahirney, P.C.; Dow, P.R.; Ovalle, W.K. Quantitative morphology of mast cells in skeletal muscle of normal and genetically dystrophic mice. Anat. Rec. 1997, 247, 341–349.
  12. Alim, M.A.; Grujic, M.; Ackermann, P.W.; Eliasson, P.; Kristiansson, P.; Peterson, M.; Pejler, G. Glutamate Triggers the Expression of Functional Ionotropic and Metabotropic Glutamate Receptors in Mast Cells. Cell Mol. Immunol. 2020.
  13. Sharma, P.; Maffulli, N. Tendinopathy and tendon injury: The future. Disabil. Rehabil. 2008, 30, 1733–1745.
  14. Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233.
  15. Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 2004, 84, 649–698.
  16. Wu, F.; Nerlich, M.; Docheva, D. Tendon injuries: Basic science and new repair proposals. EFORT Open Rev. 2017, 2, 332–342.
  17. Mienaltowski, M.J.; Birk, D.E. Structure, physiology, and biochemistry of collagens. Adv. Exp. Med. Biol. 2014, 802, 5–29.
  18. Vestergaard, P.; Jorgensen, J.O.L.; Olesen, J.L.; Bosnjak, E.; Holm, L.; Frystyk, J.; Langberg, H.; Kjaer, M.; Hansen, M. Local administration of growth hormone stimulates tendon collagen synthesis in elderly men. J. Appl. Physiol. 2012, 113, 1432–1438.
  19. Alfredson, H. The chronic painful Achilles and patellar tendon: Research on basic biology and treatment. Scand J. Med. Sci. Sports 2005, 15, 252–259.
  20. Khan, K.M.; Cook, J.L.; Bonar, F.; Harcourt, P.; Astrom, M. Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med. 1999, 27, 393–408.
  21. Maffulli, N.; Khan, K.M.; Puddu, G. Overuse tendon conditions: Time to change a confusing terminology. Arthroscopy 1998, 14, 840–843.
  22. Tran, P.H.T.; Malmgaard-Clausen, N.M.; Puggaard, R.S.; Svensson, R.B.; Nybing, J.D.; Hansen, P.; Schjerling, P.; Zinglersen, A.H.; Couppe, C.; Boesen, M.; et al. Early development of tendinopathy in humans: Sequence of pathological changes in structure and tissue turnover signaling. FASEB J. 2020, 34, 776–788.
  23. Tuite, D.J.; Renstrom, P.A.; O’Brien, M. The aging tendon. Scand. J. Med. Sci. Sports 1997, 7, 72–77.
  24. Svensson, R.B.; Heinemeier, K.M.; Couppe, C.; Kjaer, M.; Magnusson, S.P. Effect of aging and exercise on the tendon. J. Appl. Physiol. (1985) 2016, 121, 1237–1246.
  25. Ranger, T.A.; Wong, A.M.; Cook, J.L.; Gaida, J.E. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br. J. Sports Med. 2016, 50, 982–989.
  26. Millar, N.L.; Murrell, G.A.; McInnes, I.B. Inflammatory mechanisms in tendinopathy—Towards translation. Nat. Rev. Rheumatol. 2017, 13, 110–122.
  27. Millar, N.L.; Murrell, G.A.; McInnes, I.B. Alarmins in tendinopathy: Unravelling new mechanisms in a common disease. Rheumatology (Oxford) 2013, 52, 769–779.
  28. Ackermann, P.W.; Franklin, S.L.; Dean, B.J.F.; Carr, A.J.; Salo, P.T.; Hart, D.A. Neuronal pathways in tendon healing and tendinopathy—Update. Front. Biosci. 2014, 19, 1251–1278.
  29. Bjur, D.; Alfredson, H.; Forsgren, S. The innervation pattern of the human Achilles tendon: Studies of the normal and tendinosis tendon with markers for general and sensory innervation. Cell Tissue Res. 2005, 320, 201–206.
  30. Ackermann, P.W.; Li, J.; Lundeberg, T.; Kreicbergs, A. Neuronal plasticity in relation to nociception and healing of rat achilles tendon. J. Orthop. Res. 2003, 21, 432–441.
  31. Schizas, N.; Lian, O.; Frihagen, F.; Engebretsen, L.; Bahr, R.; Ackermann, P.W. Coexistence of up-regulated NMDA receptor 1 and glutamate on nerves, vessels and transformed tenocytes in tendinopathy. Scand J. Med. Sci. Sports 2010, 20, 208–215.
  32. Alfredson, H.; Lorentzon, R. Chronic tendon pain: No signs of chemical inflammation but high concentrations of the neurotransmitter glutamate. Implications for treatment? Curr. Drug Targets 2002, 3, 43–54.
  33. Ljung, B.O.; Alfredson, H.; Forsgren, S. Neurokinin 1-receptors and sensory neuropeptides in tendon insertions at the medial and lateral epicondyles of the humerus. Studies on tennis elbow and medial epicondylalgia. J. Orthop. Res. 2004, 22, 321–327.
  34. Spang, C.; Harandi, V.M.; Alfredson, H.; Forsgren, S. Marked innervation but also signs of nerve degeneration in between the Achilles and plantaris tendons and presence of innervation within the plantaris tendon in midportion Achilles tendinopathy. J. Musculoskelet. Neuronal Interact. 2015, 15, 197–206.
  35. Abate, M.; Silbernagel, K.G.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res. Ther. 2009, 11, 235.
  36. Broughton, G., 2nd; Janis, J.E.; Attinger, C.E. Wound healing: An overview. Plast. Reconstr. Surg. 2006, 117, 1e-S–32e-S.
  37. Langberg, H.; Skovgaard, D.; Karamouzis, M.; Bulow, J.; Kjaer, M. Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. J. Physiol. 1999, 515, 919–927.
  38. Kjaer, M.; Langberg, H.; Skovgaard, D.; Olesen, J.; Bulow, J.; Krogsgaard, M.; Boushel, R. In vivo studies of peritendinous tissue in exercise. Scand. J. Med. Sci. Sports 2000, 10, 326–331.
  39. McMahon, S.B.; Cafferty, W.B.J.; Marchand, F. Immune and glial cell factors as pain mediators and modulators. Exp. Neurol. 2005, 192, 444–462.
  40. Bjorklund, E.; Forsgren, S.; Alfredson, H.; Fowler, C.J. Increased expression of cannabinoid CB(1) receptors in Achilles tendinosis. PLoS ONE 2011, 6, e24731.
  41. Domeij-Arverud, E.; Labruto, F.; Latifi, A.; Nilsson, G.; Edman, G.; Ackermann, P.W. Intermittent pneumatic compression reduces the risk of deep vein thrombosis during post-operative lower limb immobilization: A prospective randomised trial of acute ruptures of the achilles tendon. Bone Jt. J. 2015, 97b, 675–680.
  42. Carter, D.R.; Beaupre, G.S.; Giori, N.J.; Helms, J.A. Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 1998, S41–S55.
  43. Nunamaker, D.M. Experimental models of fracture repair. Clin. Orthop. Relat. Res. 1998, S56–S65.
  44. Chiu, I.M.; von Hehn, C.A.; Woolf, C.J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 2012, 15, 1063–1067.
  45. Ackermann, P.W.; Ahmed, M.; Kreicbergs, A. Early nerve regeneration after achilles tendon rupture—A prerequisite for healing? A study in the rat. J. Orthop. Res. 2002, 20, 849–856.
  46. Chen, C.C.; Grimbaldeston, M.A.; Tsai, M.; Weissman, I.L.; Galli, S.J. Identification of mast cell progenitors in adult mice. Proc. Natl. Acad. Sci. USA 2005, 102, 11408–11413.
  47. Dahlin, J.S.; Hallgren, J. Mast cell progenitors: Origin, development and migration to tissues. Mol. Immunol. 2015, 63, 9–17.
  48. Kitamura, Y.; Shimada, M.; Hatanaka, K.; Miyano, Y. Development of Mast-Cells from Grafted Bone-Marrow Cells in Irradiated Mice. Nature 1977, 268, 442–443.
  49. Gurish, M.F.; Austen, K.F. Developmental origin and functional specialization of mast cell subsets. Immunity 2012, 37, 25–33.
  50. Wernersson, S.; Pejler, G. Mast cell secretory granules: Armed for battle. Nat. Rev. Immunol. 2014, 14, 478–494.
  51. Pejler, G.; Ronnberg, E.; Waern, I.; Wernersson, S. Mast cell proteases: Multifaceted regulators of inflammatory disease. Blood 2010, 115, 4981–4990.
  52. Galli, S.J.; Nakae, S.; Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 2005, 6, 135–142.
  53. Erdei, A.; Andrasfalvy, M.; Peterfy, H.; Toth, G.; Pecht, I. Regulation of mast cell activation by complement-derived peptides. Immunol. Lett. 2004, 92, 39–42.
  54. Babina, M.; Guhl, S.; Artuc, M.; Zuberbier, T. Allergic FcepsilonRI- and pseudo-allergic MRGPRX2-triggered mast cell activation routes are independent and inversely regulated by SCF. Allergy 2018, 73, 256–260.
  55. Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2015, 6, 620.
  56. McNeil, B.D.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 2015, 519, 237–241.
  57. Reber, L.L.; Sibilano, R.; Mukai, K.; Galli, S.J. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol. 2015, 8, 444–463.
  58. Johnzon, C.F.; Ronnberg, E.; Pejler, G. The Role of Mast Cells in Bacterial Infection. Am. J. Pathol. 2016, 186, 4–14.
  59. Abraham, S.N.; St John, A.L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 2010, 10, 440–452.
  60. Metz, M.; Piliponsky, A.M.; Chen, C.-C.; Lammel, V.; Åbrink, M.; Pejler, G.; Tsai, M.; Galli, S.J. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms. Science 2006, 313, 526–530.
  61. Akahoshi, M.; Song, C.H.; Piliponsky, A.M.; Metz, M.; Guzzetta, A.; Abrink, M.; Schlenner, S.M.; Feyerabend, T.B.; Rodewald, H.R.; Pejler, G.; et al. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J. Clin. Investig. 2011, 121, 4180–4191.
  62. Steinhoff, M.; Buddenkotte, J.; Lerner, E.A. Role of mast cells and basophils in pruritus. Immunol. Rev. 2018, 282, 248–264.
  63. Marichal, T.; Tsai, M.; Galli, S.J. Mast cells: Potential positive and negative roles in tumor biology. Cancer Immunol. Res. 2013, 1, 269–279.
  64. Church, M.K.; Kolkhir, P.; Metz, M.; Maurer, M. The role and relevance of mast cells in urticaria. Immunol. Rev. 2018, 282, 232–247.
  65. Metz, M.; Grimbaldeston, M.A.; Nakae, S.; Piliponsky, A.M.; Tsai, M.; Galli, S.J. Mast cells in the promotion and limitation of chronic inflammation. Immunol. Rev. 2007, 217, 304–328.
  66. Bradding, P.; Pejler, G. The controversial role of mast cells in fibrosis. Immunol. Rev. 2018, 282, 198–231.
  67. Karasuyama, H.; Miyake, K.; Yoshikawa, S.; Yamanishi, Y. Multifaceted roles of basophils in health and disease. J. Allergy Clin. Immunol. 2018, 142, 370–380.
  68. Anand, P.; Singh, B.; Jaggi, A.S.; Singh, N. Mast cells: An expanding pathophysiological role from allergy to other disorders. Naunyn-Schmiedebergs Arch. Pharmacol. 2012, 385, 657–670.
  69. Shi, M.A.; Shi, G.P. Different roles of mast cells in obesity and diabetes: Lessons from experimental animals and humans. Front. Immunol. 2012, 3, 7.
  70. Gupta, K.; Harvima, I.T. Mast cell-neural interactions contribute to pain and itch. Immunol. Rev. 2018, 282, 168–187.
  71. Mittal, A.; Sagi, V.; Gupta, M.; Gupta, K. Mast Cell Neural Interactions in Health and Disease. Front. Cell Neurosci. 2019, 13, 110.
  72. Nakashima, C.; Ishida, Y.; Kitoh, A.; Otsuka, A.; Kabashima, K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp. Dermatol. 2019, 28, 1405–1411.
  73. Chatterjea, D.; Martinov, T. Mast cells: Versatile gatekeepers of pain. Mol. Immunol. 2015, 63, 38–44.
  74. Stalman, A.; Bring, D.; Ackermann, P.W. Chemokine expression of CCL2, CCL3, CCL5 and CXCL10 during early inflammatory tendon healing precedes nerve regeneration: An immunohistochemical study in the rat. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2682–2689.
  75. Grutzkau, A.; Kruger-Krasagakes, S.; Baumeister, H.; Schwarz, C.; Kogel, H.; Welker, P.; Lippert, U.; Henz, B.M.; Moller, A. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: Implications for the biological significance of VEGF206. Mol. Biol. Cell 1998, 9, 875–884.
  76. Leon, A.; Buriani, A.; Dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R. Mast cells synthesize, store, and release nerve growth factor. Proc. Natl. Acad. Sci. USA 1994, 91, 3739–3743.
  77. Lindstedt, K.A.; Wang, Y.; Shiota, N.; Saarinen, J.; Hyytiainen, M.; Kokkonen, J.O.; Keski-Oja, J.; Kovanen, P.T. Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: A novel function for chymase. FASEB J. 2001, 15, 1377–1388.
  78. Maltby, S.; Khazaie, K.; McNagny, K.M. Mast cells in tumor growth: Angiogenesis, tissue remodelling and immune-modulation. Biochim. Biophys. Acta 2009, 1796, 19–26.
  79. Coussens, L.M.; Raymond, W.W.; Bergers, G.; Laig-Webster, M.; Behrendtsen, O.; Werb, Z.; Caughey, G.H.; Hanahan, D. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999, 13, 1382–1397.
  80. Chen, H.; Xu, Y.; Yang, G.; Zhang, Q.; Huang, X.; Yu, L.; Dong, X. Mast cell chymase promotes hypertrophic scar fibroblast proliferation and collagen synthesis by activating TGF-beta1/Smads signaling pathway. Exp. Ther. Med. 2017, 14, 4438–4442.
  81. Lang, Y.D.; Chang, S.F.; Wang, L.F.; Chen, C.M. Chymase mediates paraquat-induced collagen production in human lung fibroblasts. Toxicol. Lett. 2010, 193, 19–25.
  82. Zhao, X.Y.; Zhao, L.Y.; Zheng, Q.S.; Su, J.L.; Guan, H.; Shang, F.J.; Niu, X.L.; He, Y.P.; Lu, X.L. Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol. Cell Biochem. 2008, 310, 159–166.
  83. Hartmann, T.; Ruoss, S.J.; Raymond, W.W.; Seuwen, K.; Caughey, G.H. Human tryptase as a potent, cell-specific mitogen: Role of signaling pathways in synergistic responses. Am. J. Physiol. 1992, 262, L528–L534.
  84. Ruoss, S.J.; Hartmann, T.; Caughey, G.H. Mast cell tryptase is a mitogen for cultured fibroblasts. J. Clin. Investig. 1991, 88, 493–499.
  85. Tchougounova, E.; Lundequist, A.; Fajardo, I.; Winberg, J.O.; Abrink, M.; Pejler, G. A key role for mast cell chymase in the activation of promatrix metalloprotease-9 and promatrix metalloprotease-2. J. Biol. Chem. 2005, 280, 9291–9296.
  86. Saarinen, J.; Kalkkinen, N.; Welgus, H.G.; Kovanen, P.T. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J. Biol. Chem. 1994, 269, 18134–18140.
  87. Gruber, B.L.; Marchese, M.J.; Suzuki, K.; Schwartz, L.B.; Okada, Y.; Nagase, H.; Ramamurthy, N.S. Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J. Clin. Investig. 1989, 84, 1657–1662.
  88. Magarinos, N.J.; Bryant, K.J.; Fosang, A.J.; Adachi, R.; Stevens, R.L.; McNeil, H.P. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens. J. Immunol. 2013, 191, 1404–1412.
  89. Ackermann, P.W.; Finn, A.; Ahmed, M. Sensory neuropeptidergic pattern in tendon, ligament and joint capsule. A study in the rat. Neuroreport 1999, 10, 2055–2060.
  90. Lian, O.; Dahl, J.; Ackermann, P.W.; Frihagen, F.; Engebretsen, L.; Bahr, R. Pronociceptive and antinociceptive neuromediators in patellar tendinopathy. Am. J. Sports Med. 2006, 34, 1801–1808.
  91. Raddant, A.C.; Russo, A.F. Calcitonin gene-related peptide in migraine: Intersection of peripheral inflammation and central modulation. Expert Rev. Mol. Med. 2011, 13, e36.
  92. Assas, B.M.; Pennock, J.I.; Miyan, J.A. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front. Neurosci. 2014, 8, 23.
  93. Li, W.W.; Guo, T.Z.; Liang, D.Y.; Sun, Y.; Kingery, W.S.; Clark, J.D. Substance P signaling controls mast cell activation, degranulation, and nociceptive sensitization in a rat fracture model of complex regional pain syndrome. Anesthesiology 2012, 116, 882–895.
  94. Green, D.P.; Limjunyawong, N.; Gour, N.; Pundir, P.; Dong, X. A Mast-Cell-Specific Receptor Mediates Neurogenic Inflammation and Pain. Neuron 2019, 101, 412–420.e3.
  95. Asadi, S.; Alysandratos, K.D.; Angelidou, A.; Miniati, A.; Sismanopoulos, N.; Vasiadi, M.; Zhang, B.; Kalogeromitros, D.; Theoharides, T.C. Substance P (SP) induces expression of functional corticotropin-releasing hormone receptor-1 (CRHR-1) in human mast cells. J. Investig. Dermatol. 2012, 132, 324–329.
  96. Eftekhari, S.; Warfvinge, K.; Blixt, F.W.; Edvinsson, L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain. 2013, 14, 1289–1303.
  97. Murphy, P.G.; Hart, D.A. Plasminogen activators and plasminogen activator inhibitors in connective tissues and connective tissue cells: Influence of the neuropeptide substance P on expression. Biochim. Biophys. Acta 1993, 1182, 205–214.
  98. Hart, D.A.; Archambault, J.M.; Kydd, A.; Reno, C.; Frank, C.B.; Herzog, W. Gender and neurogenic variables in tendon biology and repetitive motion disorders. Clin. Orthop. Relat. Res. 1998, 44–56.
  99. Le, D.D.; Schmit, D.; Heck, S.; Omlor, A.J.; Sester, M.; Herr, C.; Schick, B.; Daubeuf, F.; Fahndrich, S.; Bals, R.; et al. Increase of Mast Cell-Nerve Association and Neuropeptide Receptor Expression on Mast Cells in Perennial Allergic Rhinitis. Neuroimmunomodulation 2016, 23, 261–270.
  100. Bring, D.K.; Reno, C.; Renstrom, P.; Salo, P.; Hart, D.A.; Ackermann, P.W. Joint immobilization reduces the expression of sensory neuropeptide receptors and impairs healing after tendon rupture in a rat model. J. Orthop. Res. 2009, 27, 274–280.
  101. Okayama, Y.; Ono, Y.; Nakazawa, T.; Church, M.K.; Mori, M. Human skin mast cells produce TNF-alpha by substance P. Int. Arch. Allergy Immunol. 1998, 117, 48–51.
  102. Kulka, M.; Sheen, C.H.; Tancowny, B.P.; Grammer, L.C.; Schleimer, R.P. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 2008, 123, 398–410.
  103. Piotrowski, W.; Foreman, J.C. Some effects of calcitonin gene-related peptide in human skin and on histamine release. Br. J. Dermatol. 1986, 114, 37–46.
More
This entry is offline, you can click here to edit this entry!