3.1. The Role of PYGM in Physiology
Muscle glycogen phosphorylase catalyzes the first step of glycogenolysis to meet the energy requirements for muscle activity. At the resting state, the inactive enzyme can be activated by AMP or inosine 5′-monophosphate (IMP), and is inhibited by ATP, G1P, and other metabolites. The coenzymes important for PYGM enzymatic activity regulation are pyridoxal phosphate (PLP, the active form of vitamin B6) [
30], and Ras-related C3 botulinum toxin substrate 1 (Rac1) [
23].
The datasets provided by Kyoto Encyclopedia of Genes and Genomes (KEGG), the biological pathways database, confirm that PYGM is involved mainly in the starch and sucrose metabolism and metabolic pathways, but indicates its involvement also in the insulin and glucagon signaling pathway, insulin resistance, and necroptosis [
31].
The analysis of bioinformatics resources using the STRING tool shows additional possible protein–protein interactions, which may be important for the PYGM functions () [
32]. The predicted physical network of functional protein partners with PYGM includes proteins involved in glycogen metabolism, specifically in glycogen breakdown (glycogenolysis), such as phosphorylase b kinase (PHK) catalytic subunit (PHKG1), and its delta subunit—calmodulin (encoded by three genes,
CALM1,
CALM2, and
CALM3). The analysis additionally indicates the interaction with glycogen debranching enzyme (amylo-alpha-1,6-glucosidase, AGL) via protein phosphatase 1 (PPP1). Some of the predicted interactions have been experimentally verified. The two-hybrid experiment shows the interaction between PYGM and PPP1R3B (protein phosphatase 1, regulatory subunit 3B) [
33].
Figure 1. The human muscle glycogen phosphorylase (PYGM) protein–protein interaction network. The prediction, based on text mining, experiments, and databases, of possible PYGM associations. The edges indicate that the proteins are part of a physical complex. Four differently colored lines represent four types of evidence. A pink line indicates the experimentally determined interactions; light blue—database evidence; green—text mining evidence; dark blue—gene co-occurrence. ALDH18A1—aldehyde dehydrogenase 18 family member A1; AGL—amylo-alpha-1,6-glucosidase, 4-alpha-glucanotransferase; CALM1, 2, 3—calmodulin 1, 2, 3; FLRT1—fibronectin leucine rich transmembrane protein 1; PHKG1—phosphorylase kinase catalytic subunit gamma 1; PPP1R3A—protein phosphatase 1 regulatory subunit 3A; RCVRN—recoverin; UGP2—UDP-glucose pyrophosphorylase 2. According to the Protein–Protein Interaction Networks Functional Enrichment Analysis, STRING (accessed on 4 February 2021) [
32].
PYGM plays a role in insulin and glucagon signaling, and insulin resistance pathways involving regulation of the glycogen level. PYGM participates in these processes through PHK and CALM in the signaling, and through PPP1 in the insulin resistance pathways [
31,
32]. The kinase PHK mediates the neural and hormonal regulation of glycogen breakdown by phosphorylating and thereby activating muscle glycogen phosphorylase. The phosphatase PP1 participates e.g., in the regulation of glycogen metabolism, muscle contraction, and protein synthesis. AGL is a multifunctional enzyme acting as a glycosyltransferase and glucosidase in glycogen debranching. CALM1 mediates the control of a large number of enzymes, ion channels, aquaporins, and other proteins through calcium binding [
34].
PYGM is also involved in the phototransduction pathway, the process in which the photoreceptor cells generate electrical signals in response to captured photons. Probably PYGM is involved in the inactivation, recovery, and/or regulation of the phototransduction cascade through interaction with recoverin (RCVRN) and CALM1, both connected with Ca
2+ cellular level regulation. The RCVRN, a low-molecular-weight, neuronal calcium sensor, is involved in phototransduction cascade regulation and signal transmission in a calcium-dependent manner [
32,
35]. So far, no experimental data explain the exact role of PYGM in this process. However, it is known that retinopathy can be one of the symptoms in muscle glycogen phosphorylase deficiency (McArdle disease) [
29,
36,
37,
38]. Analysis of the PYGM expression pattern leads to the conclusion that impaired glycogen metabolism, both in the retinal pigment epithelium and in cone photoreceptors, is involved in McArdle disease-linked retinopathy [
29].
The role of PYGM in necroptosis described in the KEGG database, a type of programmed cell death with necrotic morphology, is based on the interaction with receptor interacting serine/threonine kinase (RIPK). RIPK3 activates glycogen phosphorylase and therefore influences glycogenolysis [
39,
40].
PYGM was also shown to play an important role in regulating the immune function of T cells. The stimulation of T cells with interleukin 2 (IL-2) leads to the activation of a small GTPase of the RAS family, RAC1. In its active configuration, RAC1 binds to PYGM and modulates PYGM enzymatic activity, leading to T-cell migration and proliferation [
23,
25,
26]. Llavero et al. (2019) propose an additional possible mechanism of this signal cascade. Their model assumes that the PYGM activation (through RAC1) may be controlled by the epidermal growth factor receptor (EGFR) [
41].
The PYGM protein–protein interaction network and its involvement in the biological processes are probably much wider, i.e., the possibly conserved role of glycolysis in promoting myoblast fusion-based muscle growth [
37]. The formation of syncytial muscles is probably founded on glycolysis-based high-rate biomass production. Indeed the attenuation of one of the genes involved in glycolysis, phosphoglycerate mutase 2 (
Pglym78/pgam2), leads to the formation of thinner muscles in
Drosophila melanogaster embryos [
42]. The Pygm protein level was shown to increase during zebrafish (
Danio rerio) development, which correlates with the decrease in glycogen level. At the same time, the Pygm distribution in zebrafish muscles changed from dispersed to highly organized. These events correspond to increased energy demand, due to the first movements of the developing embryo [
43].
The assembly performed within the Biological General Repository for Interaction Datasets (BioGRID) public database revealed almost 50 proteins involved in the biological interactions with PYGM (see
Table S1) [
44]. Therefore, it is highly probable that PYGM is an important factor involved not only in glycogenolysis but also in a diverse range of other physiological and pathological biological processes.