To facilitate the use of gold nanoparticles in the health sector and minimize the environmental impact, it is essential not to use any toxic or harmful chemical during the synthesis. Hence, researchers have been shifted towards green synthesis methods, where the reducing and stabilizing agents are obtained from plants or a few at times bacteria. All the works that evolve biological methods for AuNPs are quite recent, being this approach a high research tendency. R.M. Ganesan et al. (2015) have synthesized AuNPs using HAuCl
4 as a precursor and extract of
Acorus calamus rhizome as a reducing agent. Then, the cotton fabrics were coated by the pad-dry-cure method. The synthesized AuNPs were small and big spherical shape and had different sizes depending upon concentration of the solution [
66]. Nabil A. Ibrahim et al. (2016) have biosynthesized AuNPs using HAuCl
43H
2O as a precursor salt and bacterial isolates
(Streptomyces sp.) as a reducing agent. The surfaces of cotton and viscose knitted fabrics were modified using plasma treatment before the functionalization with gold nanoparticles in combination with TiO
2NPs or ZnONPs. The AuNPs were observed to have spherical shape with size in the range of 4–13 nm. The nanoparticles were deposited on to the knitted fabrics by sonication [
67]. Bin Tang et al. (2017) have used in situ synthesis method to prepare AuNPs onto a cotton fabric using HAuCl
4 solutions at the concentrations of 0.025, 0.05, 0.075, 0.10, and 0.125 mM. Cellulose acted as reducing and stabilizing agents. The obtained AuNPs have exhibited different shapes depending on the content of gold such as spherical and triangular nanoplates with different sizes. The coated fabric displayed catalytic activity and improved UV protection [
68]. To obtain a green approach, Jinlon Tao et al. (2018) functionalized cotton and polyester fabric by hybrid colloids of AuNPs and NRP (natural rubber particles), which was obtained through in situ synthesis of AuNPs in NRL (natural rubber latex) matrix. In this process, NRL act as both reducing and capping agent. HAuCl
4 solution and NRL was employed for obtaining AuNP@ NRP hybrid latex. The team induced the hierarchical nature into the material by the addition of NRL, which lead to the phenomena of hydrophobicity of the treated fabrics. The fabric surface was coated with AuNPs of size 31 nm using the dip and dry method [
69]. P. Boomi et al. (2019) have functionalized cotton fabric using gold nanoparticles produced by green synthesis reduction method by maintaining pH value equal to 7. In this study, AuNPs were synthesized by reducing HAuCl
4 with
Coleus aromaticus leaf extract. The AuNPs were coated on the cotton fabric by immersion of the fabric in the colloidal solution. The obtained nanoparticles were of spherical and triangular shape and different sizes were measured [
70]. Pandi Boomi et al. (2020) have synthesized AuNPs and deposited them on the cotton fabric to improve their antibacterial and anticancer properties. The gold nanoparticles were synthesized by green synthesis, where
Croton sparsiflorus leaves extract acted as both reducing and stabilizing agent and HAuCl
4 as precursor salt. The cotton fabric was coated with pristine leaf extract through the pad-dry-cure method. Different sizes between 16.6 and 17 nm were obtained using high concentration and low concentration solution, respectively [
71]. Simone Haslinger et al. (2019) reported a novel strategy that was attempted for the first time. Noble metal nanoparticles were added into the cellulose pulp by a hydrothermal approach and subsequently subjected to dry-wet spin process. They have functionalized cellulose-based textiles with Au and AgNPs. In this study, bleached
birch prehydrolyzed kraft pulp acted as a reducing agent and HAuCl
4 as precursor salt to synthesize AuNPs. These nanoparticles were incorporated into the textile by dry-jet wet spinning process, which improved the UV protection and helped to achieve bright colors [
72]. Some attempts to use the combination of both chemical and green methodologies to study the synergetic effect of both methodologies have been performed. Velmurugan et al. (2016) synthesized AuNPs using in situ synthesis method onto leather, silk, and cotton fabrics by three different methods that include green, chemical, and a combination of green and chemical synthesis.
Ginkgo biloba Linn leaf powder extract, HAuCl
4, and potassium borohydride (KBH
4) were used in green and chemical synthesis. For the combination of green and chemical synthesis,
Ginkgo biloba Linn leaf powder extract and KBH
4 were used, and the obtained nanoparticles were deposited by immersion of the fabrics in the solution. TEM observations had revealed nanoparticles in the range of 10–75 nm with either rectangular, spherical, hexagonal with smooth edges, or roughly circular in shape [
73]. The use of biological methods showed several advantages, but more studies are needed to solve reproducibility issues, understand the influence of AuNPs attached groups in the assigned properties, and implement them at the commercial level.