Role of Artificial Intelligence in Healthcare: History
Please note this is an old version of this entry, which may differ significantly from the current revision.

Artificial Intelligence (AI) has emerged as a transformative technology with immense potential in the field of medicine. By leveraging machine learning and deep learning, AI can assist in diagnosis, treatment selection, and patient monitoring, enabling more accurate and efficient healthcare delivery. The widespread implementation of AI in healthcare has the role to revolutionize patients’ outcomes and transform the way healthcare is practiced, leading to improved accessibility, affordability, and quality of care. 

  • artificial intelligence
  • machine learning
  • deep learning
  • clinical applications
  • diagnosis

1. Introduction

Artificial intelligence is increasingly being used as a virtual tool in many countries around the world. With its ability to mimic human cognitive functions, AI has revolutionized industries, improved efficiency, and unlocked new possibilities. During the past few years, governments have adopted a variety of smart applications that can use AI and its subsets provide predictions and recommendations in various fields, such as healthcare, finance, agriculture, education, social media, and data security.
Since the outbreak of COVID-19 in 2019, AI technologies have experienced accelerated adoption and utilization across various domains within the healthcare sector. In response to the pandemic, AI has emerged as a valuable tool and is being used for disease detection and diagnosis, medical imaging and analysis, treatment planning and personalized medicine, drug discovery and development, predictive analytics, and risk assessment. In 2018, Loh E. [1] stated that AI has the potential to significantly transform physicians’ roles and revolutionize the practice of medicine, and it is important for all doctors, in particular those in positions of leadership within the health system, to anticipate the potential changes, forecast their impact and make strategic plans for the medium to long term. In contrast, in 2021, Mistry C. et al. [2] assessed that the necessity for deploying advanced digital devices has become a requirement to offer augmented customer satisfaction, permitting tracking, checking the health status, and achieving better drug adherence.
The field of AI is continuously evolving and researchers are exploring various avenues to create intelligent systems with different capabilities. The authors employed a visual representation, in the form of Figure 1, to illustrate the diverse subtypes of AI. Table 1 provides an overview of the definitions of terms related to AI and their integration within the healthcare sector.
Figure 1. Illustration of the AI subtypes.

2. Disease Detection and Diagnosis and Medical Imaging

The application of AI within the diagnostic process supporting medical specialists could be of great value for the healthcare sector and the patients’ overall well-being [23]. The fundamental goal of the diagnosis of a disease lies in determining whether a patient is affected by a disease or not [24]. The first step in the diagnostic process involves obtaining a complete medical history and conducting a physical examination. For instance, a technique can use sound analysis to recognize COVID-19 from different respiratory sounds, e.g., cough, breathing, and voice [25]. Additionally, for a precise diagnosis, AI algorithms can be used for the analysis of medical scans and pathology images. Imaging applications include the determination of ejection fraction from echocardiograms [26], the detection and volumetric quantification of lung nodules from radiographs [27], and the detection and quantification of breast densities via mammography [28]. Imaging applications in pathology include an FDA-cleared system for whole-slide imaging (WSI) and their integration into a laboratory offers many benefits over light microscopy [29].

3. Treatment Planning and Personalized Medicine

AI tools have the ability to analyze large amounts of data and detect patterns. Therefore, they can make predictions for efficient and personalized treatment strategies. Personalized medicine, as an extension of medical sciences, uses practice and medical decisions to deliver customized healthcare services to patients [30]. For example, CURATE.AI is an AI-derived platform that maps the relationship between an intervention intensity (input-drug) and a phenotypic result (output) for an individual, based exclusively on that individual’s data, creating a profile, which serves as a map to predict the outcome for a specified input and to recommend the intervention intensity that will provide the best result [31].

4. Drug Discovery and Development

The use of AI has been increasing in the pharmaceutical industry, and as a result, it has reduced the human workload as well as achieved targets in a short period of time [32]. AI can recognize hit and lead compounds, and provide a quicker validation of the drug target and optimization of the drug structure design [33,34]. In January 2023, Insilico Medicine announced an encouraging topline readout of its phase 1 safety and pharmacokinetics trial of the molecule INS018_055, designed by AI for idiopathic pulmonary fibrosis, a progressive disease that causes scarring of the lungs [35].

5. Predictive Analytics and Risk Assessment

Disease risk assessment is the process of evaluating a person’s probability of developing certain diseases, based on risk factors such as genetic predispositions, environmental exposures, and lifestyle choices. AI techniques have been adopted to address the various steps involved in clinical genomic analysis—including variant calling, genome annotation, variant classification, and phenotype-to-genotype correspondence—and perhaps eventually they can also be applied to genotype-to-phenotype predictions [36]. Moreover, Ramazzotti et al. accomplished a successful prognosis prediction for 27 out of 36 cancers by employing AI to analyze various types of biological data such as RNA expression, point mutations, DNA methylation, and omics data of copy number variation. The data used for analysis was sourced from The Cancer Genome Atlas (TCGA) [37].

This entry is adapted from the peer-reviewed paper 10.3390/jpm13081214

This entry is offline, you can click here to edit this entry!
Video Production Service