Химический состав мискантуса гигантского из разных климатических регионов.: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: , , , , , , , , ,

Лигноцеллюлозная биомасса представляет большой интерес как альтернативный энергетический ресурс, поскольку обладает рядом преимуществ. Мискантус х гигантский представляет собой лигноцеллюлозное сырье, представляющее особый интерес, поскольку сочетает в себе высокую продуктивность биомассы с низким воздействием на окружающую среду, включая контроль выбросов СО 2 . Химический состав лигноцеллюлозы определяет возможности ее применения для эффективной промышленной переработки. Здесь мы собрали образцы коллекции Miscanthus x giganteus , которые выращивались в разных климатических регионах в период с 2019 по 2021 год. Химический состав определялся количественно традиционными влажными методами. Результаты сравнивались между собой и с известными данными. Показано , что уже с первого года вегетации мискантус имеет следующий химический состав: содержание целлюлозы 43,2–55,5 %, содержание кислотонерастворимого лигнина 17,1–25,1 %, пентозана 17,9–22,9 %, зольность 0,90–2,95 %, и 0,3–1,2% экстрактивных веществ. Было обнаружено, что среда обитания и окружающая среда влияют на химический состав мискантуса . Установлено, что стеблевая часть мискантуса богаче клетчаткой, чем листовая (48,4–54,9% против 47,2–48,9% соответственно), независимо от возраста плантации и местообитания. Полученные данные расширяют географию исследований химического состава мискантуса и подтверждают высокую ценность мискантуса для промышленной переработки его в целлюлозные продукты во всем мире.

  • Miscanthus
  • chemical composition
  • cellulose
  • lignin
  • pentosans
  • different climate regions
  1. Мискантус – альтернативный источник энергии

Ископаемое топливо является невозобновляемым источником энергии, имеющим решающее значение для глобального развития , и вполне вероятно, что оно будет истощено в течение следующих 40–50 лет. Крайне важно продвигать альтернативные источники энергии для замены ресурсов ископаемого топлива, снижения выбросов парниковых газов и снижения антропогенной нагрузки на окружающую среду. Лигноцеллюлозная биомасса представляет большой интерес в качестве альтернативного энергетического ресурса из-за значительных преимуществ, которые она предлагает: большое разнообразие, доступность, углеродная нейтральность и низкая стоимость по сравнению с ископаемым топливом. На сегодняшний день лигноцеллюлозная биомасса оценивается почти в 25% мирового энергообеспечения .

Многолетние растения С4 считаются особенно перспективным альтернативным сырьем из-за их более высокой фотосинтетической способности, высокой урожайности и продуктивного использования азота и воды по сравнению с растениями С3. Эти особенности позволяют многолетним травам, в частности мисканту , достигать значительных урожаев, даже если они выращиваются на маргинальных и деградированных землях, тем самым оказывая на них положительное средообразующее воздействие. При этом мискантус считается одним из наиболее перспективных, поскольку он способен более эффективно использовать ресурсы окружающей среды, чем другие растения С4.

Выращивание мискантуса само по себе полезно для восстановления окружающей среды, например, для фиксации CO 2  и восстановления . Использование мискантуса в качестве углеродного ресурса может заменить ископаемое топливо без серьезного ущерба окружающей среде . В Китае Мискантус уже стал востребован для развития биоэнергетики . В Великобритании мискантус также рекламируется как популярное сырье для биоэнергетики из-за высокой урожайности (8–32 тонн/га) и высокой энергетической продуктивности (140–560 ГДж/га) по сравнению с другим сырьем. Считается, что мискантус способен сократить и в перспективе заменить древесину в промышленности, если будут использоваться более экологически безопасные (зеленые) технологии, в частности, без использования химикатов серы и хлора и, следовательно, с минимальным негативным воздействием на окружающую среду. 

Наиболее изучены следующие сорта мискантуса: Miscanthus sinensis, Miscanthus x giganteus, Miscanthus sacchariflorus и Miscanthus floridulus.

В настоящем исследовании мы исследовали Miscanthus giganteus , многолетнюю зерновую культуру с урожайностью биомассы до 40 тонн/га в год  в течение 18–25 лет, имеющую высокий потенциал снижения выбросов парниковых газов за счет фиксация углерода в почве . Преимущество Miscanthus × giganteus состоит в том, что он способен связывать в два раза больше углерода, чем Miscanthus sinensis .

Выращивание мискантуса гигантского в России обсуждается в сравнении с другими странами (эдафоклиматические условия, урожайность, сроки уборки и составной состав золы) в ряде исследований , но данные о химическом составе отсутствуют. (содержание полимеров) этих урожаев.

Химический состав любого лигноцеллюлозного сырья необходимо оценить, чтобы определить, имеет ли сырье ценность для его преобразования в востребованные продукты [1]. Химический состав Miscanthus × giganteus в настоящее время активно изучается. Несмотря на разнообразие методов количественного определения химического состава мискантуса , они скорее похожи, чем различны, что делает возможным сравнение имеющихся данных. Продолжаются исследования по измерению химического состава и его изменениям после химической модификации. Известны исследования химического состава мискантуса. Изучаются связи между химическим составом мискантуса и видом/сортом, возрастом плантаций, климатическими условиями, сезонными изменениями и сроками сбора урожая. Проводятся исследования химического состава в зависимости от времени заготовки биомассы: раннего (осеннего) и позднего (весеннего). Весенняя уборка предпочтительна также из-за низкой влажности биомассы и более полной передачи питательных веществ от листьев и стеблей к корневищам для хранения и использования в следующем сезоне , что благоприятно влияет на качество почвы . Влияние возраста плантаций на урожайность биомассы  и химический состав мискантуса исследуется . Имеются единичные исследования по количественному определению химического состава различных морфологических частей мискантуса.

Несмотря на то , что мискантус явно перспективен для уменьшения выбросов углекислого газа и/или для его превращения в ценные продукты, исследований химического состава мискантуса х гигантского, выращенного в трех различных климатических регионах, не проводилось. Настоящее исследование расширит знания о химическом составе Miscanthus × giganteus в зависимости от среды обитания, возраста плантации и морфологической части растения.

Целью настоящей работы была оценка химического состава мискантуса х гигантского в зависимости от климатического региона выращивания и морфологической части растения (листа и стебля).

 

2.1. Образцы мискантуса

Miscanthus × giganteus samples were provided by the farmers from seven different plantations with vegetation years of 2019–2021 (Table 1). The plantations are all located within Russia in the following cities grouped by the climate regions: Kaluga, Moscow, Bryansk, Kaliningrad and Penza (the temperate continental climate region), Novosibirsk (the continental climate region), and Irkutsk (the severely continental climate region).

The whole aboveground portion of Miscanthus (cut 10–15 cm above the ground) was used for the chemical composition quantification. The Miscanthus biomass was composed chiefly of stems, as the leaves are less able to withstand wind and frost. The Miscanthus biomass was ground for chemical composition quantification and, if necessary, air-dried to a moisture of, at most, 8%.

We determined the chemical composition of eleven Miscanthus samples from the whole plant having the following habitats and plantation ages: Kaluga, aged 1, 4 and 5 years; Moscow, aged 3 and 7 years; Bryansk, aged 1 and 2 years; Kaliningrad, aged 2 years; Penza, aged 8 years; Novosibirsk, aged 1 year; and Irkutsk, aged 1 year. The data on the harvesting year, farmers and yield capacity (calculated), sample weight and climatic conditions for cultivation of Miscanthus × giganteus differing in plantation age and habitats (Russia) are outlined in Table 1. We also quantified chemical compositions of four Miscanthus samples from different morphological parts, the leaf and stem, of the plants having the following habitats and plantation ages: Kaluga, aged 1 and 5 years; Kaliningrad, aged 2 years; and Moscow, aged 3 years. These samples were provided by the farmers to us.

Table 1. Data on harvesting year, farmers and yield capacity (calculated), sample weight and climatic conditions for cultivation of Miscanthus × giganteus differing in plantation age and habitat (Russia).

Plantation Age/Habitat/Harvesting Year

Farmer

Yield Capacity, t/ha

Sample Weight, kg

Annual Means

Т, °С

Rainfalls, mm

1 year old, Kaluga, 2020

ООО Re:forma

2.5

7.6

+5.6

636

4 years old, Kaluga, 2021

ООО Re:forma

21.5

4.0

+5.6

636

5 years old, Kaluga, 2022

ООО Re:forma

22.0

4.5

+5.6

636

3 years old, Moscow, 2020

ООО Master Brand

14.5

11.0

+5.8

739

7 years old, Moscow, 2020

ООО Master Brand

19.0

6.8

+6.0

825

1 year old, Bryansk, 2021

Farm Household Savchenko V.V.

2.9

2.5

+6.1

671

2 years old, Bryansk, 2022

Farm Household Savchenko V.V.

10.0

3.0

+6.1

671

2 years old, Kaliningrad, 2021

ООО Kalagra Farm

12.0

2.4

+7.9

750

8 years old, Penza, 2022

Penza State Agrarian University

22.0

15.0

+5.2

521

1 year old, Novosibirsk, 2020

Siberian Research Institute of Plant Cultivation and Breeding

2.1

1.0

+2.6

437

1 year old, Irkutsk, 2022

ООО Sibgiprobum

2.0

1.5

+1.0

472

 

2.2. Chemical Composition of Miscanthus

The standard analytical techniques, also known as the wet ones, which rely on feedstock fractionation and are most commonly used for cellulosic biomass were employed for the quantification of chemical constituents of Miscanthus .

The cellulose content was measured by the Kürschner method by extracting a weighed portion of Miscanthus with mixed alcohol/nitric acid in a ratio of 4:1. The acid-insoluble lignin content was determined using 72% sulfuric acid as per the TAPPI standard. Pentosans were quantified by transforming the same in boiling 13 wt.% HCl solution into furfural which was collected in the distillate and determined on a xylose-calibrated UNICO UV-2804 spectrophotometer (United Products & Instruments, Dayton, NJ, USA) at a 630 nm wavelength using orcinol–ferric chloride. The ash content was quantified by the TAPPI standard. The extractives were quantified by the TAPPI standard after successive extraction with methylene chloride in a Soxhlet extractor. Moisture was analyzed on an OHAUS MB-25 moisture analyzer (Parsippany, NJ, USA). All the experiments were performed in triplicate and the data were expressed as the means.

The analyses were done using equipment provided by the Biysk Regional Center for Shared Use of Scientific Equipment of the SB RAS (IPCET SB RAS, Biysk city, ).

The chemical composition is the most important indicator to evaluate if a plant feedstock has the potential for efficient industrial processing. The Miscanthus cell wall consists mainly of the polymers such as cellulose, hemicelluloses and lignin. There are guidelines on how to assess the biomass quality after a plant growth period of at least 2–3 years. Here, we examined the biomass of Miscanthus from different-aged plantations, including one-year-old plants. Table 2 summarizes the chemical compositions of Miscanthus giganteus differing in plantation age and habitats.

Table 2. Chemical composition of Miscanthus giganteus differing in plantation age and habitat (Russia).

Plantation Age/Habitat/
Harvesting Year

Component Content, %

 

Cellulose

Lignin

Pentosans

Ash

Extractives

1 year old, Kaluga, 2020

47.8 ± 0.5

21.5 ± 0.5

22.9 ± 0.5

0.90 ± 0.05

1.2 ± 0.1

4 years old, Kaluga, 2021

49.4 ± 0.5

20.6 ± 0.5

22.3 ± 0.5

1.45 ± 0.05

0.5 ± 0.1

5 years old, Kaluga, 2022

50.2 ± 0.5

19.6 ± 0.5

20.4 ± 0.5

1.58 ± 0.05

0.6 ± 0.1

3 years old, Moscow, 2020

50.1 ± 0.5

21.7 ± 0.5

21.0 ± 0.5

1.55 ± 0.05

0.8 ± 0.1

7 years old, Moscow, 2020

50.1 ± 0.5

25.0 ± 0.5

21.7 ± 0.5

0.96 ± 0.05

0.7 ± 0.1

1 year old, Bryansk, 2021

46.8 ± 0.5

21.3 ± 0.5

22.2 ± 0.5

1.76 ± 0.05

0.5 ± 0.1

2 years old, Bryansk, 2022

50.4 ± 0.5

18.5 ± 0.5

22.6 ± 0.5

1.25 ± 0.05

0.5 ± 0.1

2 years old, Kaliningrad, 2021

53.5 ± 0.5

25.1 ± 0.5

19.7 ± 0.5

1.82 ± 0.05

0.3 ± 0.1

8 years old, Penza, 2022

55.5 ± 0.5

20.9 ± 0.5

19.5 ± 0.5

2.63 ± 0.05

0.9 ± 0.1

1 year old, Novosibirsk, 2020

43.2 ± 0.5

19.7 ± 0.5

20.2 ± 0.5

2.95 ± 0.05

0.9 ± 0.1

1 year old, Irkutsk, 2022

44.4 ± 0.5

17.1 ± 0.5

17.9 ± 0.5

2.61 ± 0.05

0.8 ± 0.1

It follows from the tabulated data (Table 2) that, starting as soon as the first vegetation year, Miscanthus exhibits the following chemical composition: 43.2–55.5% cellulose content, 17.1–25.1% acid-insoluble lignin content, 17.9–22.9% pentosan content, 0.90–2.95% ash content and 0.3–1.2% extractives.

By comparing the chemical compositions of Miscanthus from different climate regions, it can be noted that Miscanthus plants from the continental (Novosibirsk) and severely continental (Irkutsk) climate regions are similar in biomass indicators. It was found by comparing these values with the chemical composition of Miscanthus plants from the same-age plantations growing in the temperate continental climate that the contents of cellulose, lignin and pentosans are higher by 2.4–4.6%, 1.6–4.4% and 2.0–5.0% in the latter climate, respectively, with the extractives content being almost similar and the ash content being 0.85–2.05% lower.

It should be noted that our data obtained for the continental climate (Novosibirsk) can be compared to those of chemical compositions of three .

Because there are no publications on chemical composition measurement results for the Russian Miscanthus giganteus varieties, we compared our findings with the international studies from the UK, the USA, Portugal, the Netherlands, Germany, France, Greece, Ukraine, Belgium, Korea and South Ireland. These countries are characterized by a milder climate, particularly by no high-negative temperatures.

Our findings on the chemical composition of Miscanthus × giganteus are in agreement with the other studies: 32.7–52.9% cellulose content, 7.6–33.0% lignin content and 17.1–33.8% hemicellulose content. However, the lignin content of the Russian Miscanthus is characterized by a narrower range of 17.1–25.1% when compared to the international results, suggestive of the impact of the habitat on the chemical composition of biomass. The main peculiar feature of Miscanthus × giganteus raised in Russia is that it is capable of growing in the temperate and severely continental climates, with a high-efficiency productivity of biomass having a cellulose content as high as 55.5%. Such a high cellulose measure is commensurate with and, in some instances, superior to those of cellulose from other countries (41.8% in Greece, 37.8% in France, 42.3% in Germany and 49.5% in the UK) [26] located in the similar temperate climate zone and even in the warmer subtropical zone. In the study by Schläfle et al., Miscanthus × giganteus raised in the moderate climate of Germany had the following chemical composition: 49.4% cellulose content, 27.7% acid-insoluble lignin content, 19.9% hemicellulose and 1.21% ash content, in a good agreement with the findings from the present study. Vanderghem et al. reported chemical compositions of Miscanthus × giganteus raised in Belgium in the moderate marine climate with a mild winter and cool summer as: 48.4% cellulose, 23.0% acid-insoluble lignin, 17.6% pentosans and 2.4% ash content, which is also consistent with the present study results.

The maximum cellulose content was detected in the biomass of Miscanthus from the oldest 8-year-old plantation, which is in good agreement with the results from the other studies  in which a tendency of the increase in the cellulose content was noted for three Miscanthus species according to the plantation age. The same tendency was observed for Miscanthus raised on the territorially similar plantations but of different ages: a cellulose content increased from 47.8% (1 year) to 49.4% (4 years) and further to 50.2% (5 years) in Kaluga city, while the cellulose content rose from 46.8% (1 year) to 50.4% (2 years) in Bryansk city. Such a tendency was not noted for the Moscow plantation (50.1% cellulose for the plantations aged 3 and 7 years old), which can be due to the fact the highest increment in the cellulose content is observed exactly in the initial life years of the plantation, i.e., the cellulose content of the plant from the 3-year-old plantation almost achieved its ultimate level and no further increment was noted. By the example of the continental climate, without being bound to any particular city, one can observe a tendency of an increase in the cellulose content from 46.8–47.8% for 1-year-old plants to 50.4–53.5% for 2-year-old plants. No relationships for the measures of pentosans, lignin, ash content and extractives were established. The data obtained by other researchers on this matter are somewhat controversial. In the UK, three harvests (from plantations aged 2, 3 and 4 years) were found to have no considerable changes in the chemical composition of 244 Miscanthus genotypes, depending on the plant age, except for the ash content. 

By comparing the chemical composition of Miscanthus from plantations in five cities located in the temperate continental climate, the highest cellulose contents were detected for the two geographical locations: 53.5% in Kaliningrad and 55.5% in Penza; the other three cities (Kaluga, Moscow and Bryansk) are characterized by close cellulose contents ranging from 49.4% to 50.4%, starting from the second vegetation year. The similar values for the latter three geographical locations are explained by the cities being territorially close to each other and hence having identical climatic conditions. The high contents of cellulose (53.5%) and lignin (25.1%) in the biomass of Miscanthus from Kaliningrad are most likely due to this plant being territorially remote from the preceding three samples, namely, due to the plant being situated at the interface of the marine climate and the temperate continental climate and hence due to a milder climate with favorable humidity and daily average temperatures in summer and winter. The second city that is distant from Kaluga, Moscow and Bryansk is Penza in which the biomass exhibits a maximum cellulose content of 55.5% and a maximum ash content of 2.63%. Despite Penza being distant from Moscow, these are very alike in the climate, but the climate in Penza is more continental and arid. Because of the Penza Miscanthus biomass having an enhanced ash content, it can be inferred that the soil of that plantation is distinct from the other plantations, which could help the biomass to achieve such a high cellulose content. This considered, such a high cellulose content is due to the plantation being 8 years old.

However, despite the difference in the chemical compositions according to the plantation age, growth conditions and habitats, a fundamental pattern is observed regarding the contents of cellulose, lignin, pentosans, ash and extractives in the leaf and stem (Figure 1).

Figure 1. The chemical composition of the leaf and stem of Miscanthus × giganteus raised in Kaluga (plantation aged 1 year), Kaliningrad (plantation aged 2 years), Moscow (plantation aged 3 years) and Kaluga (plantation aged 5 years).

It follows from Figure 1 that the stem contains most of cellulose (48.4–54.9% vs. 47.2–48.9%) and lignin (23.0–26.3% vs. 18.7–20.4%), while the leaf contains chiefly the other non-cellulosic constituents, more specifically ash (3.95–7.79% vs. 0.93–1.91%), pentosans (22.2–24.4% vs. 19.1–22.1%) and extractives (1.2–1.9% vs. 0.4–0.9%). The difference in the chemical composition is attributed to different metabolic mechanisms of the processes occurring in the leaves and stems. In particular, the stiffening of the stem compared to the flexible leaf is due to the higher lignin content. The ash content of the leaf is 2.1–8.4 times higher than that of the stem, which is due to the leaves being richer in minerals. These comparison results allow for the conclusion that the Miscanthus stem is characterized by a higher cellulose content, irrespective of the habitat and plantation age.

It was found in Germany, as was in our study, that cellulose (50.0–50.5% vs. 44.8–45.0%) was concentrated in the Miscanthus stem, while pentosans and ash were concentrated in the leaf (28.4–29.5% and 4.53–6.82% vs. 26.2–27.4% and 2.50–3.07%, respectively), with no considerable differences in the lignin content (25.3–26.0%) detected in the leaf and stem. In Korea, located in the temperate climate region, the stems of three Miscanthus species were found to have a higher content of cellulose than the leaves, whereas the lignin content did not differ greatly between the leaves and stems. It was discovered in South Ireland, as was in our study, that cellulose and lignin were concentrated in the stem of Miscanthus giganteus (52.5% and 14.7% vs. 35.5% and 8.0%, respectively), while pentosans and ash were concentrated in the leaf (31.0% and 5.8% vs. 19.7% and 3.2%, respectively). Even though the tendency of the three basic constituents concentrated in the leaf and stem persists, the chemical composition of Miscanthus from South Ireland differs appreciably from our findings: a high ash content of 3.2–5.8% in the leaf and stem and a low cellulose content (35.5%) and a high pentosan content (31.0%) in the leaf, which is explained by the different climatic features of the countries, namely by a milder moist oceanic climate of South Ireland. In the USA (Iowa) , cellulose and lignin were also concentrated in the stem (41.6% and 25.6% vs. 33.2% and 24.1%), while pentosans in the leaf (17.7% vs. 17.1%). The pattern of the distribution of the basic constituents within the leaf and stem is observable again, but in particular, the leaf is much lower in cellulose content, which is due to the climatic features of the growth region, namely due to the continental climate with a hot arid summer and cold winter.

Our study demonstrated that the habitat and climatic peculiarities have an impact on the chemical composition of Miscanthus. A more detailed evaluation of the chemical composition of Miscanthus × giganteus requires that different-age Miscanthus should be further harvested from the same plantation, which will reveal new patterns and relationships, and the creation of a Russia-wide chemical composition database should be continued.

The low content of lignin in Miscanthus × giganteus and its conceptual distinction from wood lignin, along with the high cellulose content (up to 55.5%), allow this crop to be reckoned as a feedstock for the manufacture of an array of valuable products. Moreover, based on the chemical composition measurements of Miscanthus that is a new cellulosic source for Russia, it can be concluded that Miscanthus has a lead position among other non-woody species, as reported likewise in .

Thus, Miscanthus × giganteus can be esteemed as a crop of high importance for the national ecology and industries because this plant forms “carbon quotes” for greenhouse gas emissions and is able to compete with fossil energy sources.

  1. Conclusions

Miscanthus was discovered to exhibit the following chemical composition, starting from the first vegetation year: 43.2–55.5% cellulose content, 17.1–25.1% acid-insoluble lignin content, 17.9–22.9% pentosan content, 0.90–2.95% ash content and 0.3–1.2% extractives. The habitat and the surrounding environment were found to influence the chemical composition of Miscanthus. Miscanthus plants raised at the interface of marine and temperate continental regions with favorable humidity and daily average temperature in summer and autumn compare favorably with the other samples in terms of the cellulose content (53.5%). Miscanthus from the 8-year-old plantation has the maximum cellulose content (55.5%), as evidenced by the cellulose increment as the plantation age was advancing. The stem part of Miscanthus offers a key merit: the stem is richer in cellulose than the leaf (48.4–54.9% vs. 47.2–48.9%, respectively). This fundamental phenomenon gives a rationale for harvesting Miscanthus in spring in the regions with dry winter, when Miscanthus naturally drops off the leaf and governs, chiefly, the use of the stem part when processed into cellulose.

The findings obtained herein broaden the geographic boundaries of the environmental triumph of Miscanthus, providing mankind with a raw material base for the manufacture of fuel and chemicals at present and in the future.

Полученные данные позволяют предположить, что в ближайшее десятилетие появится возможность провести скрининг химического состава мискантуса х гигантского , выращенного на одновозрастных плантациях в разных регионах страны.

References

  1. Yulia A. Gismatulina; Vera V. Budaeva; Aleksey N. Kortusov; Ekaterina I. Kashcheyeva; Evgenia K. Gladysheva; Galina F. Mironova; Ekaterina A. Skiba; Nadezhda A. Shavyrkina; Anna A. Korchagina; Vladimir N. Zolotukhin; et al. Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia. Plants 2022, 11, 2791, .
More
This entry is offline, you can click here to edit this entry!
Video Production Service