Therapeutic Applications of Probiotics: History
Please note this is an old version of this entry, which may differ significantly from the current revision.

Probiotics are live microorganisms that induce health benefits to the host. Prebiotics, such as inulin and fructooligosaccharides, are nondigestible food components that promote the growth of beneficial bacteria in the colon, whereas synbiotics are a mixture of live microorganisms with substrates that are selectively utilized by host which can provide even more benefits than prebiotics alone.

  • probiotic supplementation
  • gestational diabetes mellitus
  • metabolic syndrome

1. The Use of Probiotics in GDM and EGWG

Preventing gestational diabetes mellitus (GDM), rather than treating it, can have a number of benefits, both health and economic. Homayouni et al. suggest that probiotics are a relatively new intervention that can lower glucose levels, prevent GDM, and reduce maternal and fetal complications resulting from it [1]. Several studies have shown that the gut microflora is significantly altered in women with GDM and is similar to that of adults with T2DM [2][3][4]. An increased number of gram-negative bacteria, such as ParabacteroidesPrevotellaHaemophilus, and Desulfovibrio, has been found in the intestines of GDM patients [3][5][6][7]. However, a study by Mokkala et al. showed that the presence or absence of a specific bacterial species or function did not predict the onset of GDM, nor did it differ depending on the severity of GDM [8], although in the group of women with GDM, a higher number of Ruminococcus obeum was found in late pregnancy [8].
The roles of probiotics in modulating the composition of the intestinal microbiota and reducing the adherence of pathobionts, regulating the permeability of the intestinal epithelium and reducing the inflammatory process has been observed [9]. A randomized study of probiotics (Lactobacillus rhamnosus GG and Bifidobacterium lactis) showed a reduction of more than 60% in GDM, with an incidence of 13% in the probiotic group compared with 34% in the control group [10]. However, some studies found no significant differences between the probiotic and placebo groups in terms of glycemic control and antioxidant capability [11][12]. Nevertheless, the study by Sahhaf Ebrahimi et al. found that the use of probiotic yogurt improved blood glucose levels as well as glycated hemoglobin (HbA1c) levels [12]. Probiotic supplementation may improve blood glucose control during the third trimester, according to a study conducted in healthy pregnant women [13]. Supplementing with probiotics reduced fasting plasma glucose, serum insulin levels, and IR while increasing insulin sensitivity [14][15][16]. However, other studies have shown no benefit of taking probiotics in reducing the risk of GDM [17][18][19][20][21] or improving glucose metabolism in overweight and obese women [8][20][21]. Studies in women with GDM found no significant differences in fasting glucose levels between a group receiving supplementation of Lactobacillus salivarius and a placebo group [22]. In contrast, a reduction in insulin resistance (HOMA-IR) and β-cell function (HOMA-B) was observed after probiotic administration [14][16][23][24][25]. Other studies have shown that taking probiotics containing Lactobacillus acidophilusLactobacillus casei and Bifidobacterium bifidum in GDM patients had a beneficial effect on glycemic control, TG levels and very low-density lipoprotein (VLDL) [15][23].
The potential positive effects of using probiotics may also result from other mechanisms. Reduction of oxidative stress and increased secretion of incretin are considered as potential mechanisms by which probiotics improve glucose metabolism [26][27][28][29]Bifidobacterium and Lactobacillus are among the most common, non-pathogenic living microorganisms used as probiotics [30]. They have been identified as probiotics that reduce systemic inflammation, regulate immune function, improve intestinal mucosa permeability, and ultimately reduce IR [31][32][33][34]Bifidobacteria are commensals of humans and animals, they belong to the phylum of Actinobacteria [35]Lactic acid bacteria are gram-positive bacteria that are traditionally used in the production of yogurt and other fermented dairy products [35]. Similar results were presented by Badehnoosh et al., who showed that taking a probiotic capsule containing Lactobacillus acidophilusLactobacillus casei, and Bifidobacterium bifidum (2 × 109 CFU/g each) for 6 weeks improved the glycemic response and markers of inflammation but did not affect pregnancy outcomes [36].
In addition, recent studies indicate that plasma vitamin C levels negatively correlate with the development of MS. It has been suggested that vitamin C supplementation may help reduce oxidative stress and postpone the chronic inflammation associated with the development of MS.
The relative abundance of short-chain fatty acids (SCFA) producing bacteria from the genera FaecalibacteriumRuminococcusRoseburiaCoprococcusAkkermansiaPhascolarctobacterium, and Eubacterium was found to be lower in GDM women, obese and T2DM [3][4][5][7][37][38][39][40][41][42][43]. SCFA affect the activity of cells of the immune system, as well as their migration to the site of inflammation, showing a significant anti-inflammatory potential [44]. The results of many animal studies show that supplementation with the probiotic Lactobacillus spp. induces the production of SCFA by modulating the intestinal microbiome [43][45][46][47][48]. Manipulating the composition of the gut microbiome, and thus the level of SCFA, may prove to be a promising method in the treatment of inflammatory diseases [44].
In the peripheral blood of patients with GDM, probiotic intake increases the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), transform growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) and decreases the expression of tumor necrosis factor alpha (TNF-α) [15]. This suggests that probiotics alleviate IR and chronic inflammation through the PPAR pathway [49].
The supplementation of probiotics also results in a considerable decrease in plasma malondialdehyde (MDA) and a significant increase in plasma nitric oxide (NO) and total antioxidant capacity [15]. MDA has cytotoxic, mutagenic and carcinogenic properties [50]. It can also inhibit enzymes related to the cell’s defence against oxidative stress [50]. NO is the main factor in endothelial cells responsible for maintaining vascular homeostasis [51].

2. The Use of Probiotics in PE

PE is a complicated disorder in pregnancy which occurs after 20 weeks of gestation and affects 2–8% of all pregnancies in the world [52][53][54]. PE is a vascular pregnancy complication with high fetal and maternal mortality and morbidity rates [55][56]. The presence of PE in the past increases the risk of hypertension, ischemic heart disease, venous thromboembolism, kidney disease and CVD, including myocardial infarction, stroke, and heart failure [52][57][58][59][60][61]. PE is associated with a 4-fold increased risk of future stroke [62]. PE is associated with a 2–7 times higher risk of CVD, especially if PE occurs before 34 weeks of gestation [57][63][64][65][66]. Research has shown a significant relationship between the occurrence of PE and MS later in life [67][68][69][70][71][72]. PE is connected to MS risk factors, which are modifiable CVD risk factors [64][73][74]. According to research by Heidema et al., obesity, IR, and arterial hypertension are all common within the first year following a pregnancy affected by PE [59]. Moreover, Hooijschuur et al. showed that the incidence of MS was higher in the subgroup of women with PE and small-for-gestational-age (SGA) neonate than in women without SGA neonate [64]. It is important to look for new interventions that can reduce the risk of developing PE and consequently, complications for the mother and offspring.

3. The Use of Probiotics in Obesity and Lipid Disorders

The influence of obesity on the development of the MS is unquestionable, and the prevention of excessive weight gain may reduce the risk of complications in the future. Diets high in saturated fat and fructose affect the composition of the gut flora [75]. The resulting dysbiosis leads to a cascade of events including increased intestinal barrier permeability, bacterial translocation, and activation of hepatic receptor-induced inflammation [76]. One proposed mechanism pertains to the production of endogenous alcohol and acetaldehyde [77][78][79].
Probiotics containing Lactobacillus paracasei can impact adipose tissue mass by modulating the activity of angiopoietin-like protein 4, a circulating lipoprotein lipase (LPL) inhibitor that controls TG deposition into adipocytes, which can help prevent obesity and metabolic disorders [80].
The beneficial effect of weight reduction was obtained during Lactobacillus gasseri (SBT2055) supplementation in overweight and obese people [81][82]. Daily consumption of 200 g of yogurt containing Lactobacillus gasseri (108 CFU/g) for 12 weeks significantly reduced abdominal obesity. BMI, waist and hip circumferences, and body fat mass were also significantly decreased from the baseline, but discontinuation of the probiotic for 4 weeks weakened these effects [81]. Additionally, in studies conducted by Ilmonen et al., supplementation with probiotics Lactobacillus rhamnosus GG and Bifidobacterium lactis showed a reduction in maternal central adiposity at 6 months postpartum [83].
Lactobacillus plantarum (PL62) as a probiotic has been shown in two mouse trials to produce conjugated linoleic acid (CLA), which has been linked to weight loss [84][85]. In a study on mice by Bagarolli et al. the effects of probiotics (Lactobacillus rhamnosusLactobacillus acidophilus and Bifidobacterium bifidum) on the intestinal microflora, changes in insulin permeability, sensitivity and signaling in a high-fat diet (HFD) were investigated [86][87]. Probiotic-treated mice receiving a HFD gained significantly less weight and had reduced food consumption and also reduced fasting blood glucose and serum insulin compared with animals that did not receive probiotics [88]. The administration of probiotics in mice fed HFD improved leptin sensitivity [86][89][90]. The study showed that the administration of probiotics to obese animals was able to reduce Toll-like receptor 4 (TLR4) activation, downstream c-Jun N-terminal kinases (JNK) phosphorylation and the subsequent insulin receptor substrate-1 (IRS1Ser307) phosphorylation [86]. The probiotic administration had no effect on TLR4 signalling in mice with a normal body weight [86]. TLR4 is a LPS receptor that plays an important role in the regulation of immunological responses to infection [91]. As one of the components of the outer membrane of Gram-negative bacteria, LPS is considered an endotoxin that may contribute to the development of inflammation and IR [92][93]. The relative levels of TNF-α and Interleukin 6 (IL-6) transcripts in the liver, muscle and blood of probiotic-treated mice were significantly lower than in the control group [86]. When compared to untreated mice, treatment with probiotics boosted the predominance of Firmicutes and Actinobacteria while decreasing the presence of Bacteroidetes [86]. Obese animals also had a higher frequency of Bacteroidetes and a lower number of Firmicutes and Actinobacteria [86]. In obese animals, probiotic therapy resulted in the continuing presence of Bacteroidetes, an increase in the prevalence of Actinobacteria, and a decrease in Firmicutes compared with the control group [86]. An increased number of bacteria from the taxonomic family Lachnospiraceae has been associated with the development of diabetes in obese mice [94][95]. Probiotic administration has beneficial effects on the host, including increased adipose tissue lipolysis. Anorexigenic peptides, such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), are secreted as a result, leading to an enhanced glucose tolerance and greater energy utilization [96][97][98]. In addition, treatment with probiotics decreased the expression of the main molecules involved in intestinal microflora inflammation and bacterial translocation, nucleotide-binding oligomerization domain-containing protein 1 (NOD-1) and CD-14 [86]. Treatment with probiotics significantly reduced the adipocyte surface area in obese mice, but the values were still outside the norm [86].
Numerous studies have shown that dysbiosis, small intestinal bacterial overgrowth and increased intestinal permeability have a role in the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), both of which are closely linked to MS [99][100][101][102]. Dysbiosis was manifested in these disorders by an increase in Enterobacteriaceae and Proteobacteria and a decrease in Bacteroidetes [100]. The specific composition of gut microbiota may play a role in both the inflammatory and fibrosis responses in patients with NAFLD [103]. In patients with NASH, an increase in the numbers of Bacteroides has been shown, and a higher degree of fibrosis has been observed in patients with an increased amount of Ruminococcus [104][105].
A meta-analysis showed that treatment with Lactobacillus acidophilus, a mixture of Lactobacillus acidophilus and Bifidobacterium lactis, and Lactobacillus plantarum for 3 to 12 weeks lowered total and low-density lipoprotein (LDL) cholesterol concentrations compared with a placebo [106][107][108]. On the other hand, no effect of Lactobacillus helveticus and Enterococcus faecium on cholesterol concentrations was demonstrated [106]. Studies found no significant differences in LDL cholesterol in women with GDM between a group with supplementation of Lactobacillus salivarius and a placebo group [21]. In a research review by Okesene-Gafa et al. it was observed that taking probiotics may be associated with a slight reduction in TG and total cholesterol [16]. In a study by Babadi et al., probiotic capsules containing Lactobacillus acidophilusLactobacillus caseiBifidobacterium bifidum and Lactobacillus fermentum reduced the concentration of TG, VLDL cholesterol, and the total/HDL cholesterol ratio while increasing HDL cholesterol levels [15].
NAFLD is strongly associated with obesity and thus closely related to the elements of MS (abdominal fat distribution, IR, diabetes, dyslipidemia, and hypertension) [109][110][111][112][113][114]. Preventing the development of NAFLD and NASH may contribute to reducing the risk of developing MS in the future.
The table below summarizes the studies conducted in pregnant women on the effects of probiotics on metabolic disorders (Table 1).
Table 1. The use of probiotics in the prevention of metabolic disorders in pregnant women.

4. Probiotics and the Prevention of the Development of MS

The studies suggest that the intestinal microbiota is a key player in the development of a chronic low-grade inflammatory state associated with MS [118]. The relationship between gut microbiota and the onset of metabolic inflammation related to obesity, IR and T2DM has been demonstrated [119][120]. Metabolic endotoxemia, which is caused primarily by the Gram-negative bacterial membrane component—LPS, is a critical event in the development of these conditions [120][121]. Through metabolic pathways, LPS leads to pro-inflammatory changes (increases in TNF-α, IL-1β and IL-6, leptin and resistin, plasminogen activator inhibitor-1 and C-reactive protein) and induces IR [122].
It has been noted that specific probiotics may, apart from their immunomodulatory and metabolic effects, modulate the intestinal microflora [123]. For these reasons, probiotics may play an important role in immunomodulation to help prevent the low-grade chronic inflammation associated with MS [35][122][124].
Inflammatory reactions in the gut can occur through activation of the TLR pathway, degradation of the IĸB kinase, and release of nuclear-kappa B factor (NF-ĸB), which activates the pro-inflammatory cascade [125][126]. Several probiotic strains such as Lactobacillus rhamnosus or Lactobacillus casei have been shown to be effective in preventing IĸB breakdown and thus reducing the release of pro-inflammatory molecules [127][128].
SCFAs such as acetate, propionate, and butyrate can be catabolized by probiotics from complex polysaccharides from the diet [129]. These substances are thought to help with metabolic disorders associated with MS. SCFAs show significant anti-inflammatory potential by reducing IR, and increasing the secretion of the protective GLP-1, which stimulates insulin release and improves β-cell function [44]. A study by Yadav et al. showed that acetate can suppress insulin signaling in adipocytes, inhibiting fat accumulation in adipose tissue [27].
It is important not only to take probiotics, but also other substances which affect probiotics bioavailability. Therefore, further work should pay attention to additional aspects including plasma concentrations of substances such as beta glucans and curcuminoids in pregnant women, which may affect probiotic absorption and increase the well-being of the gut microflora [130][131]. Vitamin C taken with probiotics may multiply their beneficial effect by reducing oxidative stress and postponing the chronic inflammation associated with the development of chronic diseases, including MS [132]. In addition, a proper diet rich in whole grains should be beneficial and could impact the microbiota profile in these patients [130].

This entry is adapted from the peer-reviewed paper 10.3390/ijms23158253

References

  1. Homayouni, A.; Bagheri, N.; Mohammad-Alizadeh-Charandabi, S.; Kashani, N.; Mobaraki-Asl, N.; Mirghafurvand, M.; Asgharian, H.; Ansari, F.; Pourjafar, H. Prevention of Gestational Diabetes Mellitus (GDM) and Probiotics: Mechanism of Action: A Review. Curr. Diabetes Rev. 2020, 16, 538–545.
  2. Ferrocino, I.; Ponzo, V.; Gambino, R.; Zarovska, A.; Leone, F.; Monzeglio, C.; Goitre, I.; Rosato, R.; Romano, A.; Grassi, G.; et al. Changes in the Gut Microbiota Composition during Pregnancy in Patients with Gestational Diabetes Mellitus (GDM). Sci. Rep. 2018, 8, 12216.
  3. Crusell, M.K.W.; Hansen, T.H.; Nielsen, T.; Allin, K.H.; Rühlemann, M.C.; Damm, P.; Vestergaard, H.; Rørbye, C.; Jørgensen, N.R.; Christiansen, O.B.; et al. Gestational Diabetes Is Associated with Change in the Gut Microbiota Composition in Third Trimester of Pregnancy and Postpartum. Microbiome 2018, 6, 89.
  4. Kuang, Y.S.; Lu, J.H.; Li, S.H.; Li, J.H.; Yuan, M.Y.; He, J.R.; Chen, N.N.; Xiao, W.Q.; Shen, S.Y.; Qiu, L.; et al. Connections between the Human Gut Microbiome and Gestational Diabetes Mellitus. Gigascience 2017, 6, 1–12.
  5. Liu, H.; Pan, L.L.; Lv, S.; Yang, Q.; Zhang, H.; Chen, W.; Lv, Z.; Sun, J. Alterations of Gut Microbiota and Blood Lipidome in Gestational Diabetes Mellitus with Hyperlipidemia. Front. Physiol. 2019, 10, 1015.
  6. Xu, Y.; Zhang, M.; Zhang, J.; Sun, Z.; Ran, L.; Ban, Y.; Wang, B.; Hou, X.; Zhai, S.; Ren, L.; et al. Differential Intestinal and Oral Microbiota Features Associated with Gestational Diabetes and Maternal Inflammation. Am. J. Physiol. Endocrinol. Metab. 2020, 319, 247–253.
  7. Cortez, R.V.; Taddei, C.R.; Sparvoli, L.G.; Ângelo, A.G.S.; Padilha, M.; Mattar, R.; Daher, S. Microbiome and Its Relation to Gestational Diabetes. Endocrine 2019, 64, 254–264.
  8. Mokkala, K.; Paulin, N.; Houttu, N.; Koivuniemi, E.; Pellonperä, O.; Khan, S.; Pietilä, S.; Tertti, K.; Elo, L.L.; Laitinen, K. Metagenomics Analysis of Gut Microbiota in Response to Diet Intervention and Gestational Diabetes in Overweight and Obese Women: A Randomised, Double-Blind, Placebo-Controlled Clinical Trial. Gut 2021, 70, 309–318.
  9. Hasain, Z.; Mokhtar, N.M.; Kamaruddin, N.A.; Mohamed Ismail, N.A.; Razalli, N.H.; Gnanou, J.V.; Raja Ali, R.A. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Front. Cell. Infect. Microbiol. 2020, 10, 188.
  10. Luoto, R.; Laitinen, K.; Nermes, M.; Isolauri, E. Impact of Maternal Probiotic-Supplemented Dietary Counselling on Pregnancy Outcome and Prenatal and Postnatal Growth: A Double-Blind, Placebo-Controlled Study. Br. J. Nutr. 2010, 103, 1792–1799.
  11. Nabhani, Z.; Hezaveh, S.J.G.; Razmpoosh, E.; Asghari-Jafarabadi, M.; Gargari, B.P. The Effects of Synbiotic Supplementation on Insulin Resistance/Sensitivity, Lipid Profile and Total Antioxidant Capacity in Women with Gestational Diabetes Mellitus: A Randomized Double Blind Placebo Controlled Clinical Trial. Diabetes Res. Clin. Pract. 2018, 138, 149–157.
  12. Sahhaf Ebrahimi, F.; Homayouni Rad, A.; Mosen, M.; Abbasalizadeh, F.; Tabrizi, A.; Khalili, L. Effect of L. Acidophilus and B. Lactis on Blood Glucose in Women with Gestational Diabetes Mellitus: A Randomized Placebo-Controlled Trial. Diabetol. Metab. Syndr. 2019, 11, 75.
  13. Laitinen, K.; Poussa, T.; Isolauri, E. Probiotics and Dietary Counselling Contribute to Glucose Regulation during and after Pregnancy: A Randomised Controlled Trial. Br. J. Nutr. 2008, 101, 1679–1687.
  14. Kijmanawat, A.; Panburana, P.; Reutrakul, S.; Tangshewinsirikul, C. Effects of Probiotic Supplements on Insulin Resistance in Gestational Diabetes Mellitus: A Double-Blind Randomized Controlled Trial. J. Diabetes Investig. 2019, 10, 163–170.
  15. Babadi, M.; Khorshidi, A.; Aghadavood, E.; Samimi, M.; Kavossian, E.; Bahmani, F.; Mafi, A.; Shafabakhsh, R.; Satari, M.; Asemi, Z. The Effects of Probiotic Supplementation on Genetic and Metabolic Profiles in Patients with Gestational Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob. Proteins 2019, 11, 1227–1235.
  16. Okesene-Gafa, K.A.; Moore, A.E.; Jordan, V.; McCowan, L.; Crowther, C.A. Probiotic Treatment for Women with Gestational Diabetes to Improve Maternal and Infant Health and Well-being. Cochrane Database Syst. Rev. 2020, 2020, 012970.
  17. Davidson, S.J.; Barrett, H.L.; Price, S.A.; Callaway, L.K.; Dekker Nitert, M. Probiotics for Preventing Gestational Diabetes. Cochrane Database Syst. Rev. 2021, 4, 9951.
  18. Taylor, B.L.; Woodfall, G.E.; Sheedy, K.E.; O’Riley, M.L.; Rainbow, K.A.; Bramwell, E.L.; Kellow, N.J. Effect of Probiotics on Metabolic Outcomes in Pregnant Women with Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2017, 9, 461.
  19. Masulli, M.; Vitacolonna, E.; Fraticelli, F.; Della Pepa, G.; Mannucci, E.; Monami, M. Effects of Probiotic Supplementation during Pregnancy on Metabolic Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Res. Clin. Pract. 2020, 162, 108111.
  20. Pellonperä, O.; Mokkala, K.; Houttu, N.; Vahlberg, T.; Koivuniemi, E.; Tertti, K.; Rönnemaa, T.; Laitinen, K. Efficacy of Fish Oil and/or Probiotic Intervention on the Incidence of Gestational Diabetes Mellitus in an At-Risk Group of Overweight and Obese Women: A Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Diabetes Care 2019, 42, 1009–1017.
  21. Callaway, L.K.; McIntyre, H.D.; Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Tobin, J.M.; Wilkinson, S.; Kothari, A.; Morrison, M.; et al. Probiotics for the Prevention of Gestational Diabetes Mellitus in Overweight and Obese Women: Findings From the SPRING Double-Blind Randomized Controlled Trial. Diabetes Care 2019, 42, 364–371.
  22. Lindsay, K.L.; Brennan, L.; Kennelly, M.A.; Maguire, O.C.; Smith, T.; Curran, S.; Coffey, M.; Foley, M.E.; Hatunic, M.; Shanahan, F.; et al. Impact of Probiotics in Women with Gestational Diabetes Mellitus on Metabolic Health: A Randomized Controlled Trial. Am. J. Obstet. Gynecol. 2015, 212, 496.
  23. Karamali, M.; Dadkhah, F.; Sadrkhanlou, M.; Jamilian, M.; Ahmadi, S.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Effects of Probiotic Supplementation on Glycaemic Control and Lipid Profiles in Gestational Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Metab. 2016, 42, 234–241.
  24. Jafarnejad, S.; Saremi, S.; Jafarnejad, F.; Arab, A. Effects of a Multispecies Probiotic Mixture on Glycemic Control and Inflammatory Status in Women with Gestational Diabetes: A Randomized Controlled Clinical Trial. J. Nutr. Metab. 2016, 2016, 5190846.
  25. Dolatkhah, N.; Hajifaraji, M.; Abbasalizadeh, F.; Aghamohammadzadeh, N.; Mehrabi, Y.; Abbasi, M.M. Is There a Value for Probiotic Supplements in Gestational Diabetes Mellitus? A Randomized Clinical Trial. J. Health Popul. Nutr. 2015, 33, 25.
  26. Paszti-Gere, E.; Szeker, K.; Csibrik-Nemeth, E.; Csizinszky, R.; Marosi, A.; Palocz, O.; Farkas, O.; Galfi, P. Metabolites of Lactobacillus Plantarum 2142 Prevent Oxidative Stress-Induced Overexpression of Proinflammatory Cytokines in IPEC-J2 Cell Line. Inflammation 2012, 35, 1487–1499.
  27. Yadav, H.; Lee, J.H.; Lloyd, J.; Walter, P.; Rane, S.G. Beneficial Metabolic Effects of a Probiotic via Butyrate-Induced GLP-1 Hormone Secretion. J. Biol. Chem. 2013, 288, 25088–25097.
  28. Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. Probiotic Yogurt Improves Antioxidant Status in Type 2 Diabetic Patients. Nutrition 2012, 28, 539–543.
  29. Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Probiotics, Prebiotics, Synbiotics and Insulin Sensitivity. Nutr. Res. Rev. 2018, 31, 35–51.
  30. Gomes, A.C.; Bueno, A.A.; de Souza, R.G.M.; Mota, J.F. Gut Microbiota, Probiotics and Diabetes. Nutr. J. 2014, 13, 60.
  31. Sichetti, M.; De Marco, S.; Pagiotti, R.; Traina, G.; Pietrella, D. Anti-Inflammatory Effect of Multistrain Probiotic Formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition 2018, 53, 95–102.
  32. Wang, G.; Li, X.; Zhao, J.; Zhang, H.; Chen, W. Lactobacillus Casei CCFM419 Attenuates Type 2 Diabetes via a Gut Microbiota Dependent Mechanism. Food Funct. 2017, 8, 3155–3164.
  33. Tamtaji, O.R.; Kouchaki, E.; Salami, M.; Aghadavod, E.; Akbari, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin, and Lipids in Patients With Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Coll. Nutr. 2017, 36, 660–665.
  34. Krumbeck, J.A.; Rasmussen, H.E.; Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. Probiotic Bifidobacterium Strains and Galactooligosaccharides Improve Intestinal Barrier Function in Obese Adults but Show No Synergism When Used Together as Synbiotics. Microbiome 2018, 6, 121.
  35. Zoumpopoulou, G.; Pot, B.; Tsakalidou, E.; Papadimitriou, K. Dairy Probiotics: Beyond the Role of Promoting Gut and Immune Health. Int. Dairy J. 2017, 67, 46–60.
  36. Badehnoosh, B.; Karamali, M.; Zarrati, M.; Jamilian, M.; Bahmani, F.; Tajabadi-Ebrahimi, M.; Jafari, P.; Rahmani, E.; Asemi, Z. The Effects of Probiotic Supplementation on Biomarkers of Inflammation, Oxidative Stress and Pregnancy Outcomes in Gestational Diabetes. J. Matern. Fetal Neonatal Med. 2018, 31, 1128–1136.
  37. Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of Maternal and Neonatal Microbiota Associated with Gestational Diabetes Mellitus. Gut 2018, 67, 1614–1625.
  38. Liu, Y.; Qin, S.; Feng, Y.; Song, Y.; Lv, N.; Liu, F.; Zhang, X.; Wang, S.; Wei, Y.; Li, S.; et al. Perturbations of Gut Microbiota in Gestational Diabetes Mellitus Patients Induce Hyperglycemia in Germ-Free Mice. J. Dev. Orig. Health Dis. 2020, 11, 580–588.
  39. Ye, G.; Zhang, L.; Wang, M.; Chen, Y.; Gu, S.; Wang, K.; Leng, J.; Gu, Y.; Xie, X. The Gut Microbiota in Women Suffering from Gestational Diabetes Mellitus with the Failure of Glycemic Control by Lifestyle Modification. J. Diabetes Res. 2019, 2019, 6081248.
  40. Zheng, W.; Xu, Q.; Huang, W.; Yan, Q.; Chen, Y.; Zhang, L.; Tian, Z.; Liu, T.; Yuan, X.; Liu, C.; et al. Gestational Diabetes Mellitus Is Associated with Reduced Dynamics of Gut Microbiota during the First Half of Pregnancy. mSystems 2020, 5, 109–120.
  41. Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota Metabolite Short Chain Fatty Acids, GCPR, and Inflammatory Bowel Diseases. J. Gastroenterol. 2017, 52, 1–8.
  42. Hu, J.; Lin, S.; Zheng, B.; Cheung, P.C.K. Short-Chain Fatty Acids in Control of Energy Metabolism. Crit. Rev. Food Sci. Nutr. 2018, 58, 1243–1249.
  43. Nagpal, R.; Wang, S.; Ahmadi, S.; Hayes, J.; Gagliano, J.; Subashchandrabose, S.; Kitzman, D.W.; Becton, T.; Read, R.; Yadav, H. Human-Origin Probiotic Cocktail Increases Short-Chain Fatty Acid Production via Modulation of Mice and Human Gut Microbiome. Sci. Rep. 2018, 8, 12649.
  44. Czajkowska, A.; Szponar, B. Short Chain Fatty Acids (SCFA), the Products of Gut Bacteria Metabolism and Their Role in the Host. Postepy Hig. Med. Dosw. 2018, 72, 131–142.
  45. Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107.
  46. Wang, Y.; Guo, Y.; Chen, H.; Wei, H.; Wan, C. Potential of Lactobacillus Plantarum ZDY2013 and Bifidobacterium Bifidum WBIN03 in Relieving Colitis by Gut Microbiota, Immune, and Anti-Oxidative Stress. Can. J. Microbiol. 2018, 64, 327–337.
  47. Huang, Y.C.; Wu, B.H.; Chu, Y.L.; Chang, W.C.; Wu, M.C. Effects of Tempeh Fermentation with Lactobacillus Plantarum and Rhizopus Oligosporus on Streptozotocin-Induced Type II Diabetes Mellitus in Rats. Nutrients 2018, 10, 1143.
  48. Mu, W.C.; VanHoosier, E.; Elks, C.M.; Grant, R.W. Long-Term Effects of Dietary Protein and Branched-Chain Amino Acids on Metabolism and Inflammation in Mice. Nutrients 2018, 10, 918.
  49. Huang, L.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Impacts of Gut Microbiota on Gestational Diabetes Mellitus: A Comprehensive Review. Eur. J. Nutr. 2021, 60, 2343–2360.
  50. Całyniuk, B.; Grochowska-Niedworok, E.; Walkiewicz, K.W.; Kawecka, S.; Popiołek, E.; Fatyga, E. Dialdehyd Malonowy-Produkt Peroksydacji Lipidów Jako Marker Zaburzeń Homeostazy i Wieku. Ann. Acad. Med. Silesiensis 2016, 70, 224–228.
  51. Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascul. Pharmacol. 2018, 100, 1–19.
  52. Rafeeinia, A.; Tabandeh, A.; Khajeniazi, S.; Marjani, A. Metabolic Syndrome in Preeclampsia Women in Gorgan. Open Biochem. J. 2014, 8, 94–99.
  53. Steegers, E.A.; Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-Eclampsia. Lancet 2010, 376, 631–644.
  54. Dildy, G.A.; Belfort, M.A.; Smulian, J.C. Preeclampsia Recurrence and Prevention. Semin. Perinatol. 2007, 31, 135–141.
  55. Roberts, J.M.; Pearson, G.; Cutler, J.; Lindheimer, M. Summary of the NHLBI Working Group on Research on Hypertension During Pregnancy. Hypertension 2003, 41, 437–445.
  56. Duley, L. The Global Impact of Pre-Eclampsia and Eclampsia. Semin. Perinatol. 2009, 33, 130–137.
  57. Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D.J. Pre-Eclampsia and Risk of Cardiovascular Disease and Cancer in Later Life: Systematic Review and Meta-Analysis. BMJ 2007, 335, 974.
  58. Romundstad, P.R.; Magnussen, E.B.; Smith, G.D.; Vatten, L.J. Hypertension in Pregnancy and Later Cardiovascular Risk: Common Antecedents? Circulation 2010, 122, 579–584.
  59. Heidema, W.M.; Scholten, R.R.; van Drongelen, J.; Spaanderman, M.E.A. Metabolic Syndrome after Preeclamptic Pregnancy: A Longitudinal Cohort Study. J. Womens Health 2019, 28, 357–362.
  60. Rangaswami, J.; Naranjo, M.; McCullough, P.A. Preeclampsia as a Form of Type 5 Cardiorenal Syndrome: An Underrecognized Entity in Women’s Cardiovascular Health. Cardiorenal Med. 2018, 8, 160–172.
  61. Ahmed, R.; Dunford, J.; Mehran, R.; Robson, S.; Kunadian, V. Pre-Eclampsia and Future Cardiovascular Risk among Women: A Review. J. Am. Coll. Cardiol. 2014, 63, 1815–1822.
  62. James, A.H.; Bushnell, C.D.; Jamison, M.G.; Myers, E.R. Incidence and Risk Factors for Stroke in Pregnancy and the Puerperium. Obstet. Gynecol. 2005, 106, 509–516.
  63. Ray, J.G.; Vermeulen, M.J.; Schull, M.J.; Redelmeier, D.A. Cardiovascular Health after Maternal Placental Syndromes (CHAMPS): Population-Based Retrospective Cohort Study. Lancet 2005, 366, 1797–1803.
  64. Hooijschuur, M.C.E.; Ghossein-Doha, C.; Kroon, A.A.; De Leeuw, P.W.; Zandbergen, A.M.; Van Kuijk, S.M.J.; Spaanderman, M.E.A. Metabolic Syndrome and Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2019, 54, 64–71.
  65. Mosca, L.; Benjamin, E.J.; Berra, K.; Bezanson, J.L.; Dolor, R.J.; Lloyd-Jones, D.M.; Newby, L.K.; Piña, I.L.; Roger, V.L.; Shaw, L.J.; et al. American Heart Association. Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women-2011 Update: A Guideline from the American Heart Association. J. Am. Coll. Cardiol. 2011, 57, 1404–1423.
  66. Powe, C.E.; Levine, R.J.; Karumanchi, S.A. Preeclampsia, a Disease of the Maternal Endothelium: The Role of Antiangiogenic Factors and Implications for Later Cardiovascular Disease. Circulation 2011, 123, 2856–2869.
  67. Smith, G.N.; Walker, M.C.; Liu, A.; Wen, S.W.; Swansburg, M.; Ramshaw, H.; White, R.R.; Roddy, M.; Hladunewich, M.; Pre-Eclampsia New Emerging Team (PE-NET). A History of Preeclampsia Identifies Women Who Have Underlying Cardiovascular Risk Factors. Am. J. Obstet. Gynecol. 2009, 200, 58.
  68. Yang, J.J.; Lee, S.A.; Choi, J.Y.; Song, M.; Han, S.; Yoon, H.S.; Lee, Y.; Oh, J.; Lee, J.K.; Kang, D. Subsequent Risk of Metabolic Syndrome in Women with a History of Preeclampsia: Data from the Health Examinees Study. J. Epidemiol. 2015, 25, 281–288.
  69. Jenabi, E.; Afshari, M.; Khazaei, S. The Association between Preeclampsia and the Risk of Metabolic Syndrome after Delivery: A Meta-Analysis. J. Matern. Fetal Neonatal Med. 2021, 34, 3253–3258.
  70. Smith, G.N.; Pudwell, J.; Walker, M.; Wen, S.W. Risk Estimation of Metabolic Syndrome at One and Three Years after a Pregnancy Complicated by Preeclampsia. J. Obstet. Gynaecol. Can. 2012, 34, 836–841.
  71. Forest, J.C.; Girouard, J.; Massé, J.; Moutquin, J.M.; Kharfi, A.; Ness, R.B.; Roberts, J.M.; Giguère, Y. Early Occurrence of Metabolic Syndrome after Hypertension in Pregnancy. Obstet. Gynecol. 2005, 105, 1373–1380.
  72. Cho, G.J.; Jung, U.S.; Sim, J.Y.; Lee, Y.J.; Bae, N.Y.; Choi, H.J.; Park, J.H.; Kim, H.J.; Oh, M.J. Is Preeclampsia Itself a Risk Factor for the Development of Metabolic Syndrome after Delivery? Obstet. Gynecol. Sci. 2019, 62, 233–241.
  73. Veerbeek, J.H.W.; Hermes, W.; Breimer, A.Y.; van Rijn, B.B.; Koenen, S.V.; Mol, B.W.; Franx, A.; de Groot, C.J.M.; Koster, M.P.H. Cardiovascular Disease Risk Factors after Early-Onset Preeclampsia, Late-Onset Preeclampsia, and Pregnancy-Induced Hypertension. Hypertension 2015, 65, 600–606.
  74. Stekkinger, E.; Zandstra, M.; Peeters, L.L.H.; Spaanderman, M.E.A. Early-Onset Preeclampsia and the Prevalence of Postpartum Metabolic Syndrome. Obstet. Gynecol. 2009, 114, 1076–1084.
  75. Rahman, K.; Desai, C.; Iyer, S.S.; Thorn, N.E.; Kumar, P.; Liu, Y.; Smith, T.; Neish, A.S.; Li, H.; Tan, S.; et al. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology 2016, 151, 733–746.
  76. Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. Gut-Liver Axis in Cirrhosis: Are Hemodynamic Changes a Missing Link? World J. Clin. Cases 2021, 9, 9320–9332.
  77. Cope, K.; Risby, T.; Diehl, A.M. Increased Gastrointestinal Ethanol Production in Obese Mice: Implications for Fatty Liver Disease Pathogenesis. Gastroenterology 2000, 119, 1340–1347.
  78. Salaspuro, M. Bacteriocolonic Pathway for Ethanol Oxidation: Characteristics and Implications. Ann. Med. 1996, 28, 195–200.
  79. Nair, S.; Cope, K.; Risby, T.H.; Diehl, A.M.; Terence, R.H. Obesity and Female Gender Increase Breath Ethanol Concentration: Potential Implications for the Pathogenesis of Nonalcoholic Steatohepatitis. Am. J. Gastroenterol. 2001, 96, 1200–1204.
  80. Aronsson, L.; Huang, Y.; Parini, P.; Korach-André, M.; Håkansson, J.; Gustafsson, J.Å.; Pettersson, S.; Arulampalam, V.; Rafter, J. Decreased Fat Storage by Lactobacillus Paracasei Is Associated with Increased Levels of Angiopoietin-Like 4 Protein (ANGPTL4). PLoS ONE 2010, 5, e13087.
  81. Kadooka, Y.; Sato, M.; Ogawa, A.; Miyoshi, M.; Uenishi, H.; Ogawa, H.; Ikuyama, K.; Kagoshima, M.; Tsuchida, T. Effect of Lactobacillus Gasseri SBT2055 in Fermented Milk on Abdominal Adiposity in Adults in a Randomised Controlled Trial. Br. J. Nutr. 2013, 110, 1696–1703.
  82. Wiciński, M.; Gębalski, J.; Gołębiewski, J.; Malinowski, B. Probiotics for the Treatment of Overweight and Obesity in Humans—A Review of Clinical Trials. Microorganisms 2020, 8, 1148.
  83. Ilmonen, J.; Isolauri, E.; Poussa, T.; Laitinen, K. Impact of Dietary Counselling and Probiotic Intervention on Maternal Anthropometric Measurements during and after Pregnancy: A Randomized Placebo-Controlled Trial. Clin. Nutr. 2011, 30, 156–164.
  84. Lee, K.; Paek, K.; Lee, H.Y.; Park, J.H.; Lee, Y. Antiobesity Effect of Trans-10,Cis-12-Conjugated Linoleic Acid-Producing Lactobacillus Plantarum PL62 on Diet-Induced Obese Mice. J. Appl. Microbiol. 2007, 103, 1140–1146.
  85. Kennedy, A.; Martinez, K.; Schmidt, S.; Mandrup, S.; LaPoint, K.; McIntosh, M. Antiobesity Mechanisms of Action of Conjugated Linoleic Acid. J. Nutr. Biochem. 2010, 21, 171–179.
  86. Bagarolli, R.A.; Tobar, N.; Oliveira, A.G.; Araújo, T.G.; Carvalho, B.M.; Rocha, G.Z.; Vecina, J.F.; Calisto, K.; Guadagnini, D.; Prada, P.O.; et al. Probiotics Modulate Gut Microbiota and Improve Insulin Sensitivity in DIO Mice. J. Nutr. Biochem. 2017, 50, 16–25.
  87. McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational Diabetes Mellitus. Nat. Rev. Dis. Primers 2019, 5, 47.
  88. Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular Consequences of Metabolic Syndrome. Transl. Res. 2017, 183, 57–70.
  89. Cano, P.G.; Santacruz, A.; Trejo, F.M.; Sanz, Y. Bifidobacterium CECT 7765 Improves Metabolic and Immunological Alterations Associated with Obesity in High-Fat Diet-Fed Mice. Obesity 2013, 21, 2310–2321.
  90. Moya-Pérez, A.; Neef, A.; Sanz, Y. Bifidobacterium Pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE 2015, 10, e0126976.
  91. Fawzy El-Sayed, K.M.; Klingebiel, P.; Dörfer, C.E. Toll-like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells. J. Endod. 2016, 42, 413–417.
  92. Cardona Gloria, Y.; Latz, E.; De Nardo, D. Generation of Innate Immune Reporter Cells Using Retroviral Transduction. Methods Mol. Biol. 2018, 1714, 97–117.
  93. Rosadini, C.V.; Kagan, J.C. Early Innate Immune Responses to Bacterial LPS. Curr. Opin. Immunol. 2017, 44, 14–19.
  94. Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature 2012, 490, 55–60.
  95. Cho, I.; Yamanishi, S.; Cox, L.; Methé, B.A.; Zavadil, J.; Li, K.; Gao, Z.; Mahana, D.; Raju, K.; Teitler, I.; et al. Antibiotics in Early Life Alter the Murine Colonic Microbiome and Adiposity. Nature 2012, 488, 621–626.
  96. Martínez, I.; Wallace, G.; Zhang, C.; Legge, R.; Benson, A.K.; Carr, T.P.; Moriyama, E.N.; Walter, J. Diet-Induced Metabolic Improvements in a Hamster Model of Hypercholesterolemia Are Strongly Linked to Alterations of the Gut Microbiota. Appl. Environ. Microbiol. 2009, 75, 4175–4184.
  97. Round, J.L.; Mazmanian, S.K. The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nat. Rev. Immunol. 2009, 9, 313–323.
  98. Mazloom, K.; Siddiqi, I.; Covasa, M. Probiotics: How Effective Are They in the Fight against Obesity? Nutrients 2019, 11, 258.
  99. Borrelli, A.; Bonelli, P.; Tuccillo, F.M.; Goldfine, I.D.; Evans, J.L.; Buonaguro, F.M.; Mancini, A. Role of Gut Microbiota and Oxidative Stress in the Progression of Non-Alcoholic Fatty Liver Disease to Hepatocarcinoma: Current and Innovative Therapeutic Approaches. Redox Biol. 2018, 15, 467–479.
  100. Brandi, G.; De Lorenzo, S.; Candela, M.; Pantaleo, M.A.; Bellentani, S.; Tovoli, F.; Saccoccio, G.; Biasco, G. Microbiota, NASH, HCC and the Potential Role of Probiotics. Carcinogenesis 2017, 38, 231–240.
  101. Wigg, A.J.; Roberts-Thomson, I.C.; Dymock, R.B.; McCarthy, P.J.; Grose, R.H.; Cummins, A.G. The Role of Small Intestinal Bacterial Overgrowth, Intestinal Permeability, Endotoxaemia, and Tumour Necrosis Factor Alpha in the Pathogenesis of Non-Alcoholic Steatohepatitis. Gut 2001, 48, 206–211.
  102. Miele, L.; Valenza, V.; La Torre, G.; Montalto, M.; Cammarota, G.; Ricci, R.; Mascianà, R.; Forgione, A.; Gabrieli, M.L.; Perotti, G.; et al. Increased Intestinal Permeability and Tight Junction Alterations in Nonalcoholic Fatty Liver Disease. Hepatology 2009, 49, 1877–1887.
  103. Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; et al. The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology 2016, 63, 764–775.
  104. Caussy, C.; Hsu, C.; Lo, M.T.; Liu, A.; Bettencourt, R.; Ajmera, V.H.; Bassirian, S.; Hooker, J.; Sy, E.; Richards, L.; et al. Genetics of NAFLD in Twins Consortium. Link between Gut-Microbiome Derived Metabolite and Shared Gene-Effects with Hepatic Steatosis and Fibrosis in NAFLD. Hepatology 2018, 68, 918–932.
  105. Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A.; Dulai, P.S.; Caussy, C.; Bettencourt, R.; Highlander, S.K.; et al. Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017, 25, 1054–1062.
  106. Cho, Y.A.; Kim, J. Effect of Probiotics on Blood Lipid Concentrations: A Meta-Analysis of Randomized Controlled Trials. Medicine 2015, 94, 1714.
  107. Shimizu, M.; Hashiguchi, M.; Shiga, T.; Tamura, H.; Mochizuki, M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE 2015, 10, e139795.
  108. Companys, J.; Pla-Pagà, L.; Calderón-Pérez, L.; Llauradó, E.; Solà, R.; Pedret, A.; Valls, R.M. Fermented Dairy Products, Probiotic Supplementation, and Cardiometabolic Diseases: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 834–863.
  109. Speiser, P.W.; Rudolf, M.C.J.; Anhalt, H.; Camacho-Hubner, C.; Chiarelli, F.; Eliakim, A.; Freemark, M.; Gruters, A.; Hershkovitz, E.; Iughetti, L.; et al. Childhood Obesity. J. Clin. Endocrinol. Metab. 2005, 90, 1871–1887.
  110. Matteoni, C.A.; Younossi, Z.M.; Gramlich, T.; Boparai, N.; Liu, Y.C.; McCullough, A.J. Nonalcoholic Fatty Liver Disease: A Spectrum of Clinical and Pathological Severity. Gastroenterology 1999, 116, 1413–1419.
  111. Mandato, C.; Lucariello, S.; Licenziati, M.R.; Franzese, A.; Spagnuolo, M.I.; Ficarella, R.; Pacilio, M.; Amitrano, M.; Capuano, G.; Meli, R.; et al. Metabolic, Hormonal, Oxidative, and Inflammatory Factors in Pediatric Obesity-Related Liver Disease. J. Pediatr. 2005, 147, 62–66.
  112. Schwimmer, J.B.; Zepeda, A.; Newton, K.P.; Xanthakos, S.A.; Behling, C.; Hallinan, E.K.; Donithan, M.; Tonascia, J.; Nonalcoholic Steatohepatitis Clinical Research Network. Longitudinal Assessment of High Blood Pressure in Children with Nonalcoholic Fatty Liver Disease. PLoS ONE 2014, 9, e112569.
  113. Newton, K.P.; Hou, J.; Crimmins, N.A.; Lavine, J.E.; Barlow, S.E.; Xanthakos, S.A.; Africa, J.; Behling, C.; Donithan, M.; Clark, J.M.; et al. Nonalcoholic Steatohepatitis Clinical Research Network. Prevalence of Prediabetes and Type 2 Diabetes in Children with Nonalcoholic Fatty Liver Disease. JAMA Pediatr. 2016, 170, 161971.
  114. Schwimmer, J.B.; Deutsch, R.; Rauch, J.B.; Behling, C.; Newbury, R.; Lavine, J.E. Obesity, Insulin Resistance, and Other Clinicopathological Correlates of Pediatric Nonalcoholic Fatty Liver Disease. J. Pediatr. 2003, 143, 500–505.
  115. Okesene-Gafa, K.A.M.; Li, M.; McKinlay, C.J.D.; Taylor, R.S.; Rush, E.C.; Wall, C.R.; Wilson, J.; Murphy, R.; Taylor, R.; Thompson, J.M.D.; et al. Effect of Antenatal Dietary Interventions in Maternal Obesity on Pregnancy Weight-Gain and Birthweight: Healthy Mums and Babies (HUMBA) Randomized Trial. AJOG 2019, 221, 152.
  116. Brantsæter, A.L.; Myhre, R.; Haugen, M.; Myking, S.; Sengpiel, V.; Magnus, P.; Jacobsson, B.; Meltzer, H.M. Intake of Probiotic Food and Risk of Preeclampsia in Primiparous Women. Am. J. Epidemiol. 2011, 174, 807–815.
  117. Nordqvist, M.; Jacobsson, B.; Brantsæter, A.L.; Myhre, R.; Nilsson, S.; Sengpiel, V. Timing of Probiotic Milk Consumption during Pregnancy and Effects on the Incidence of Preeclampsia and Preterm Delivery: A Prospective Observational Cohort Study in Norway. BMJ Open 2018, 8, 18021.
  118. Thiennimitr, P.; Yasom, S.; Tunapong, W.; Chunchai, T.; Wanchai, K.; Pongchaidecha, A.; Lungkaphin, A.; Sirilun, S.; Chaiyasut, C.; Chattipakorn, N.; et al. Lactobacillus Paracasei HII01, Xylooligosaccharides, and Synbiotics Reduce Gut Disturbance in Obese Rats. Nutrition 2018, 54, 40–47.
  119. Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772.
  120. Rastelli, M.; Knauf, C.; Cani, P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity 2018, 26, 792–800.
  121. Kirsch, R.; Clarkson, V.; Verdonk, R.C.; Marais, A.D.; Shephard, E.G.; Ryffel, B.; Hall, P. Rodent Nutritional Model of Steatohepatitis: Effects of Endotoxin (Lipopolysaccharide) and Tumor Necrosis Factor Alpha Deficiency. J. Gastroenterol. Hepatol. 2006, 21, 174–182.
  122. Torres, S.; Fabersani, E.; Marquez, A.; Gauffin-Cano, P. Adipose Tissue Inflammation and Metabolic Syndrome. The Proactive Role of Probiotics. Eur. J. Nutr. 2019, 58, 27–43.
  123. He, M.; Shi, B. Gut Microbiota as a Potential Target of Metabolic Syndrome: The Role of Probiotics and Prebiotics. Cell Biosci. 2017, 7, 54.
  124. Fabersani, E.; Abeijon-Mukdsi, M.C.; Ross, R.; Medina, R.; González, S.; Gauffin-Cano, P. Specific Strains of Lactic Acid Bacteria Differentially Modulate the Profile of Adipokines In Vitro. Front. Immunol. 2017, 8, 266.
  125. Kelly, J.R.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-Gut-Microbiota Axis: Challenges for Translation in Psychiatry. Ann. Epidemiol. 2016, 26, 366–372.
  126. Kemgang, T.; Kapila, S.; Shanmugam, V.; Kapila, R. Cross-Talk between Probiotic Lactobacilli and Host Immune System. J. Appl. Microbiol. 2014, 117, 303–319.
  127. Zhang, L.; Li, N.; Caicedo, R.; Neu, J. Alive and Dead Lactobacillus Rhamnosus GG Decrease Tumor Necrosis Factor-α–Induced Interleukin-8 Production in Caco-2 Cells. J. Nutr. 2005, 135, 1752–1756.
  128. Tien, M.T.; Girardin, S.E.; Regnault, B.; Bourhis, L.L.; Dillies, M.A.; Coppée, J.Y.; Bourdet-Sicard, R.; Sansonetti, P.J.; Pédron, T. Anti-Inflammatory Effect of Lactobacillus Casei on Shigella-Infected Human Intestinal Epithelial Cells. J. Immunol. 2006, 176, 1228–1237.
  129. Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and Functional Importance in the Gut. Proc. Nutr. Soc. 2021, 80, 37–49.
  130. Rossi, P.; Difrancia, R.; Quagliariello, V.; Savino, E.; Tralongo, P.; Randazzo, C.; Berretta, M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: An example of complementary and integrative medicine. Oncotarget 2018, 9, 24837–24856.
  131. Yucel, C.; Quagliariello, V.; Iaffaioli, R.; Ferrari, G.; Donsì, F. Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake. Int. J. Pharm. 2015, 15, 357–369.
  132. Berretta, M.; Quagliariello, V.; Maurea, N.; Di Francia, R.; Sharifi, S.; Facchini, G.; Rinaldi, L.; Piezzo, M.; Manuela, C.; Nunnari, G.; et al. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants 2020, 9, 1182.
More
This entry is offline, you can click here to edit this entry!
Video Production Service