Popular Uses and Botanical Description of Kalanchoe: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: , , , , , , ,

The Crassulaceae J. St.-Hil. family is composed of 36 genera. Species of this family are distributed in Africa and Asia, predominantly in Madagascar and Arabia but are also found in the Americas and in Australia. The genus Kalanchoe Adans (Heterotypic Synonyms: Baumgartenia Tratt., Bryophyllum Salisb., Crassuvia Comm. ex Lam., Geaya Costantin and Poiss., Kitchingia Baker, Meristostylus Klotzsch, Physocalycium Vest, and Vereia Andrews) belongs to the Crassulaceae family and comprises 179 accepted species. 

  • traditional use
  • chemical composition
  • botanical description
  • Kalanchoe

1. Traditional Uses

The genus Kalanchoe is widely used in folk medicine to treat different health diseases and disorders. Thus far, only 21 of the 133 species of the genus Kalanchoe have been reported regarding their popular uses, as described in Table 1.
Table 1. Traditional uses of Kalanchoe species.
From these 21 species, there exists a broad ethnopharmacological knowledge of four species that are more often cited as medicinal plants (K. pinnata, K. laciniata, K. crenata, and K. daigremontiana), suggesting that they can be adopted to treat wounds, cancer, diabetes, infections, and inflammation. However, there are no reports in the scientific literature that describe the amounts of plant or dosages for ethnomedicinal uses.
All parts of the Kalanchoe species are traditionally used for medicinal purposes, but the juice or crude extract preparations (produced by maceration) are cited as the primary forms of administration [2][5][6][8][9][18][20][29][35][41][49][56][58][63][71][72][74].
In the cases of K. × houghtonii, K. flammea, K. gastonis-bonnieri, and K. integra, the literature does not describe which parts of the plant, method of preparation, or the dosage are popularly recommended for medicinal use. As is the case with many medicinal plants, folk-information related to traditional use of medicinal plants contributes to the search for scientific basis in these treatment regimens. These data, and the important lack thereof in most cases, reinforce the importance of additional investigations into the chemistry and bioactivity of this genera.

2. Botanical Description

Species of the Crassulaceae family are herbaceous or sub-shrubs, usually succulent, opposite, or alternate, and exstipulate. The flowers are actinomorphic, hermaphrodite, and usually cymose [87]. Species of the Kalanchoe genus are herbaceous or sub-woody; they have small branches and can reach from 1 to 1.5 m in height, especially during their flowering stage. Its leaves are opposite, succulent, oval, and have crenated margins, which are 10 to 20 cm long. Flowers can measure up to 5 cm in length, are pendant, and are arranged in inflorescences. Fruits are membranous, and the seeds are ellipsoid. The stem has thin-walled cells located deep in the epidermis. These cell walls are impregnated with resin, forming a thin layer that can reduce liquid evaporation [88][89][90].
These species adapt well and tolerate extreme conditions, such as lighting and water scarcity. One feature of this plant is a compartment in the leaves and stem tissues that can store and inhibit water loss [90][91][92]. This physical adaptation works in tandem with crassulacean acid metabolism (CAM), a metabolic adaptation to perform photosynthetic CO2 fixation and water loss reduction. During the night, and at low temperatures, the stomata open, and the plant can assimilate atmospheric CO2. However, daylight closes the stomata structure and CO2 fixation occurs [93][94][95]. The stomatas have been described in detail and can be considered anatomical markers of the family [96].
Species of the genus Kalanchoe are popularly known due to their propagation by leaf embryos, and these propagules (also called leaf bulbs or bulbils) from the margins of the leaves are responsible for their tremendous invasiveness. New plants can be produced from parts of the mother plant, especially by clonal growth through the bulbs that arise from the leaf margins. In suitable open places (such as rocky or sandy environments) these populations can quickly form dense stands. This feature is the primary reason they are popularly known as “mother-of-thousands” or “mother-of-millions” [19][49][97].
Only 16 of the 133 species of the genus Kalanchoe have had their botanical aspects formally described in the literature (Table 2). More specifically, 11 of them have a macroscopic description (K. blossfeldiana; K. marmorata; K. beharensis, K. laxiflora, K. orgyalis, K. rhombopilosa, K. synsepala, K. tetraphylla, K. tomentosa, and K. × houghtonii), and only 5 have additional botanical evaluation/microscopical analysis of the plants (K. daigremontiana, K. delagoensis, K. laciniata, K. pinnata, and K. pumila).
In the case of K. blossfeldiana, five genotypes were also distinguished by morphological characterization (assessing the flower’s anatomical aspects and plant height), and molecular profiling (random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR), and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools) [98].
These data demonstrate that even with some similarities between the species, an adequate morpho-anatomical study of the material can allow the correct identification of the studied species and validation of the scientific data (biological or chemical study). In this research, species identification errors that could disavow the scientific data obtained have been identified [21][101].

This entry is adapted from the peer-reviewed paper 10.3390/molecules28145574

References

  1. Kołodziejczyk-Czepas, J.; Nowak, P.; Wachowicz, B.; Piechocka, J.; Glowacki, R.; Moniuszko-Szajwaj, B.; Stochmal, A. Antioxidant efficacy of Kalanchoe daigremontiana bufadienolide-rich fraction in blood plasma in vitro. Pharm. Biol. 2016, 54, 3182–3188.
  2. Kołodziejczyk-Czepas, J.; Stochmal, A. Bufadienolides of Kalanchoe species: An overview of chemical structure, biological activity and prospects for pharmacological use. Phytochem. Rev. 2017, 16, 1155–1171.
  3. Lai, Z.R.; Peng, W.H.; Ho, Y.L.; Huang, S.C.; Huang, T.H.; Lai, S.C.; Ku, Y.R.; Tsai, J.C.; Wang, C.Y.; Chang, Y.S. Analgesic and anti-inflammatory activities of the methanol extract of Kalanchoe gracilis (L.) DC stem in mice. Am. J. Chin. Med. 2010, 38, 529–546.
  4. Lai, Z.R.; Ho, Y.L.; Huang, S.C.; Huang, T.H.; Lai, S.C.; Tsai, J.C.; Wang, C.Y.; Huang, G.J.; Chang, Y.S. Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of Kalanchoe gracilis (L.) DC Stem. Am. J. Chin. Med. 2011, 39, 1275–1290.
  5. Akulova-Barlow, Z. Kalanchoe. Cactus Succul. J. 2009, 81, 268–276.
  6. Asiedu-Gyekye, I.J.; Antwi, D.A.; Awortwe, C.; N’guessan, B.B.; Nyarko, A.K. Short-term administration of an aqueous extract of Kalanchoe integra var. crenata (Andr.) Cuf leaves produce no major organ damage in Sprague-Dawley rats. J. Ethnopharmacol. 2014, 151, 891–896.
  7. Asiedu-Gyekye, I.J.; Arhin, E.; Arthur, S.A.; N’guessan, B.B.; Amponsah, S.K. Genotoxicity, nitric oxide level modulation and cardio-protective potential of Kalanchoe integra var. crenata (Andr.) cuf leaves in murine models. J. Ethnopharmacol. 2022, 283, 114640.
  8. Awortwe, C.; Manda, K.V.; Avonto, C.; Khan, I.S.; Walker, L.A.; Boiuc, P.J.; Rosenkranz, B. In vitro evaluation of reversible and time-dependent inhibitory effects of Kalanchoe crenata on CYP2C19 and CYP3A4 activities. Drug Metab. Lett. 2015, 9, 48–62.
  9. Garcia-Perez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. Pharmaceuticals 2020, 13, 444.
  10. Kamgang, R.; Foyet, A.F.; Essame, J.L.; Ngogang, J.Y. Effect of methanolic fraction of Kalanchoe crenata on metabolic parameters in adriamycin-induced renal impairment in rats. Indian J. Pharmacol. 2012, 44, 566–570.
  11. Kuete, V.; Fokou, F.W.; Karaosmanoğlu, O.; Beng, V.P.; Sivas, H. Cytotoxicity of the methanol extracts of Elephantopus mollis, Kalanchoe crenata and 4 other Cameroonian medicinal plants towards human carcinoma cells. BMC Complement. Altern. Med. 2017, 17, 280.
  12. Mutie, F.M.; Mbuni, Y.M.; Rono, P.C.; Mkala, E.M.; Nzei, J.M.; Phumthum, M.; Hu, G.-W.; Wang, Q.-F. Important Medicinal and Food Taxa (Orders and Families) in Kenya, Based on Three Quantitative Approaches. Plants 2023, 12, 1145.
  13. Ngezahayo, J.; Havyarimana, F.; Hari, L.; Stévigny, C.; Duez, P. Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases. J. Ethnopharmacol. 2015, 173, 338–351.
  14. Odukoya, J.O.; Odukoya, J.O.; Mmutlane, E.M.; Ndinteh, D.T. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors insub-Saharan Africa. Plants 2022, 11, 1387.
  15. Raadts, E. The Genus Kalanchoe (Crassulaceae) in Tropical East Africa. Willdenowia 1997, 8, 101–157.
  16. Mawla, F.; Khatoon, S.; Rehana, F.; Jahan, S.; Shelley, M.R.; Hossain, S.; Haq, W.M.; Rahman, S.; Debnath, K.; Rahmatullah, M. Ethnomedicinal plants of folk medicinal practitioners in four villages of Natore and Rajshahi districts, Bangladesh. Am.-Eurasian J. Sustain. Agric. 2012, 6, 406–416.
  17. Molina, G.A.; Esparzab, R.; López-Mirandab, J.L.; Hernández-Martínez, A.R.; Espana-Sanchez, B.L.; Elizalde-Pena, E.A.; Estevez, M. Green synthesis of Ag nanoflowers using Kalanchoe daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf. B 2019, 180, 141–149.
  18. Stefanowicz-Hajduk, J.; Asztemborska, M.; Krauze-Baranowska, M.; Godlewska, S.; Gucwa, M.; Moniuszko-Szajwaj, B.; Stochmanl, A.; Ochocka, J.R. Identification of Flavonoids and Bufadienolides and Cytotoxic Effects of Kalanchoe daigremontiana Extracts on Human Cancer Cell Lines. Planta Med. 2020, 86, 239–246.
  19. Zawirska-Wojtasiak, R.; Jankowska, B.; Piechowska, P.; Szkudlarz, S.M. Vitamin C and aroma composition of fresh leaves from Kalanchoe pinnata and Kalanchoe daigremontiana. Sci. Rep. 2019, 9, 19786.
  20. Akentieva, N.P.; Shushanov, S.S.; Gizatullin, A.R.; Prikhodchenko, T.R.; Prikhodchenko, T.R.; Shkondina, N.I.; D’agaro, E. The Effect of Plant Extracts Kalanchoe daigremontiana and Aloe arborescens on the Metabolism of Human Multiple Myeloma Cells. Biointerface Res. Appl. Chem. 2021, 11, 13171–13186.
  21. Chernetskyy, M.; Woźniak, A.; Skalska-Kamińska, A.; Żuraw, B.; Blicharska, E.; Rejdak, R.; Donica, H.; Weryszko-Chmielewska, E. Structure Of Leaves And Phenolic Acids in Kalanchoe daigremontiana Raym.-Hamet & H. Perrier. Acta Sci. Pol. Hortorum Cultus 2018, 17, 137–155.
  22. Moniuszko-Szajwaj, B.; Pecio, L.; Kowalczyk, M.; Stochmal, A. New Bufadienolides Isolated from the Roots of Kalanchoe daigremontiana (Crassulaceae). Molecules 2016, 21, 243.
  23. Hsieh, Y.J.; Yang, M.Y.; Leu, I.Y.; Chen, C.; Wan, C.F.; Chang, M.Y.; Chang, C.J. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus. BMC Complement. Altern. Med. 2012, 12, 149.
  24. Huang, H.C.; Huang, G.J.; Liaw, C.C.; Yang, C.S.; Yang, C.P.; Kuo, C.L.; Tseng, Y.H.; Wang, S.Y.; Chang, W.T.; Kuo, Y.H. A new megastigmane from Kalanchoe tubiflora (Harvey) Hamet. Phytochem. Lett. 2013, 6, 379–382.
  25. Huang, H.C.; Lin, M.K.; Yang, H.L.; Hseu, Y.C.; Liaw, C.C.; Tseng, Y.H.; Tsuzuki, M.; Kuo, Y.H. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity. Planta Med. 2013, 79, 1362–1369.
  26. Schmidt, C.; Fronza, M.; Goettert, M.; Geller, F.; Luik, S.; Flores, E.M.M.; Bittencourt, C.F.; Zanetti, G.D.; Heinzmann, B.M.; Laufer, S.; et al. Biological studies on Brazilian plants used in wound healing. J. Ethnopharmacol. 2009, 122, 523–532.
  27. Getachew, M.; Belayneh, A.; Kebede, B.; Alimaw, Y.; Biyazin, Y.; Abebaw, A.; Abebe, D. Medicinal plants used for management of hemorrhoids in Ethiopia: A systematic review. Heliyon 2022, 8, e10211.
  28. Arias-González, I.; García-Carrancá, A.M.; Cornejo-Garrido, J.; Ordaz-Pichardo, C. Cytotoxic effect of Kalanchoe flammea and induction of intrinsic mitochondrial apoptotic signaling in prostate cancer cells. J. Ethnopharmacol. 2018, 222, 133–147.
  29. Richwagen, N.; James, T.L.; Brandon, L.F.D.; Quave, C.L. Antibacterial activity of Kalanchoe mortagei and K. fedtschenkoi against ESKAPE pathogens. Front. Pharmacol. 2019, 10, 67.
  30. Palumbo, A.; Casanova, L.M.; Corrêa, M.F.P.; Da Costa, N.M.; Nasciutti, L.E.; Costa, S.S. Potential therapeutic effects of underground parts of Kalanchoe gastonis-bonnieri on benign prostatic hyperplasia. Evid. Based Complement. Altern. Med. 2019, 2019, 6340757.
  31. Frimpong-Manso, S.; Asiedu-Gyekye, I.J.; Naadu, J.P.; Magnus-Aryitey, G.T.; Nyarko, A.K.; Boamah, D.; Awan, M. Micro and macro element composition of Kalanchoe integra leaves: An adjuvant treatment for hypertension in Ghana. Int. J. Hypertens. 2015, 2015.
  32. Costa, A.C.O.; Fernandes, J.M.; Negreiros Neto, T.S.; Mendonça, J.N.; Tomaz, J.C.; Lopes, N.P.; Soares, L.A.L.; Zucolotto, S.M. Quantification of Chemical Marker of Kalanchoe brasiliensis (Crassulaceae) Leaves by HPLC-DAD. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 795–800.
  33. Cruz, B.P.; Chedier, L.M.; Fabri, R.L.; Pimenta, D.S. Chemical and agronomic development of Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers under light and temperature levels. An. Acad. Bras. Ciências 2011, 83, 1435–1441.
  34. Cruz, B.P.; Chedier, L.M.; Peixoto, P.H.P.; Fabri, R.L.; Pimenta, D.S. Effects of light intensity on the distribution of anthocyanins in Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers. An. Acad. Bras. Ciências 2012, 84, 211–217.
  35. de Araujo, E.R.D.; Guerra, G.C.B.; Araújo, D.F.S.; de Araújo, A.A.; Fernandes, J.M.; De Araujo Junior, R.F.; De Carvalho, T.G.; Ferreira, L.S.; Zucolotto, S.M. Gastroprotective and antioxidant activity of Kalanchoe brasiliensis and Kalanchoe pinnata leaf juices against indomethacin and ethanol- 45 induced gastric lesions in rats. Int. J. Mol. Sci. 2018, 19, 1265.
  36. Fernandes, J.M.; Félix-Silva, J.; da Cunha, L.M.; Gomes, J.A.; Siqueira, E.M.S.; Gimenes, L.P.; Lopes, N.P.; Soares, L.A.L.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Inhibitory Effects of Hydroethanolic Leaf Extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against Local Effects Induced by Bothrops jararaca Snake Venom. PLoS ONE 2016, 11, e0168658.
  37. Fonseca, A.G.; Ribeiro Dantas, L.L.S.F.; Fernandes, J.M.; Zucolotto, S.M.; Neves Lima, A.A.; Soares, L.A.L.; Rocha, H.A.O.; Lemos, T.M.A.M. In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves. J. Toxicol. 2018, 2018, 6849765.
  38. Haile, A.A.; Tsegay, B.A.; Seid, A.; Adnew, W.; Moges, A. A Review on Medicinal Plants Used in the Management of Respiratory Problems in Ethiopia over a Twenty-Year Period (2000–2021). Evid. Based Complement. Alternat Med. 2022, 2022, 2935015.
  39. Manan, M.; Hussain, L.; Ijaz, H.; Qadir, M.I. Phytochemical screening of different extracts of Kalanchoe laciniata. Pak. J. Pharm. Sci. 2015, 29, 1321–1324.
  40. Sharif, A.; Akhtar, M.F.; Akhtar, B.; Saleem, A.; Manan, M.; Shabbir, M.; Ashraf, M.; Peerzada, S.; Ahmed, S.; Raza, M. Genotoxic and Cytotoxic Potential Of Whole Plant Extracts Of Kalanchoe Laciniata By Ames And Mtt Assay. EXCLI J. 2017, 16, 593–601.
  41. Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Hałasa, R.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Ochocka, R. Biological activities of leaf extracts from selected Kalanchoe species and their relationship with bufadienolides content. Pharm. Biol. 2020, 58, 732–740.
  42. Bogale, M.; Sasikumar, J.M.; Egigu, M.C. An ethnomedicinal study in tulo district, west hararghe zone, oromia region, Ethiopia. Heliyon 2023, 9, e15361.
  43. Singab, A.B.; El-Ahmady, S.H.; Labib, R.M.; Fekry, S.S. Phenolics from Kalanchoe marmorata Baker, Family Crassulaceae. Bull. Fac. Pharm. Cairo. Univ. 2011, 49, 1–5.
  44. Tahir, M.; Asnake, H.; Beyene, T.; Van Damme, P.; Mohammed, A. Ethnobotanical study of medicinal plants in Asagirt District, Northeastern Ethiopia. Trop. Med. Health 2023, 51, 1.
  45. Abebe, W. An overview of Ethiopian traditional medicinal plants used for cancer treatment. Eur. J. Med. Plants 2016, 14, 1–16.
  46. Agize, M.; Asfaw, Z.; Nemomissa, S.; Gebre, T. Ethnobotany of traditional medicinal plants and associated indigenous knowledge in Dawuro Zone of Southwestern Ethiopia. J. Ethnobiol. Ethnomedicine 2022, 18, 48.
  47. Mekonnen, A.B.; Mohammed, A.S.; Tefera, A.K. Ethnobotanical Study of Traditional Medicinal Plants Used to Treat Human and Animal Diseases in Sedie Muja District, South Gondar, Ethiopia. Evid.-Based Complement. Altern. Med. 2022, 2022, 7328613.
  48. Tadesse, T.Y.; Zeleke, M.M.; Dagnew, S.B. Review of Ethnobotanical and Ethnopharmacological Evidence of Some Ethiopian Medicinal Plants Traditionally Used for Peptic Ulcer Disease Treatment. Clin. Exp. Gastroenterol. 2022, 15, 171–187.
  49. Ferreira, R.T.; Coutinho, M.A.; Malvar, D.C.; Costa, E.A.; Florentino, I.F.; Costa, S.S.; Vanderlinde, F.A. Mechanisms Underlying the Antinociceptive, Antiedematogenic, and Anti-Inflammatory Activity of the Main Flavonoid from Kalanchoe pinnata. Evid. Based. Complement. Altern. Med. 2014, 2014, 429256.
  50. Ahmed, M.N.; Hughes, K. Role of ethno-phytomedicine knowledge in healthcare of COVID-19: Advances in traditional phytomedicine perspective. Beni-Suef Univ. J. Basic. Appl. Sci. 2022, 11, 96.
  51. Ahmed, M.; Wazir, Z.U.; Khan, R.A.; Khan, M.I.; Waqas, S.; Iqbal, A. Pharmacological evaluation of crude methanolic extract of Kalanchoe pinnata leaves. Environ. Toxicol. Chem. 2013, 95, 1539–1545.
  52. Anadozie, S.O.; Akinyemi, J.A.; Agunbiade, S.; Ajiboyeet, B.O.; Adewale, O.B. Bryophyllum pinnatum inhibits arginase II activity and prevents oxidative damage occasioned by carbon tetrachloride (CCl4) in rats. Biomed. Pharmacother. 2018, 101, 8–13.
  53. Bachmann, S.; Betschart, C.; Gerber, J.; Fürer, K.; Mennet, M.; Hamburger, M.; Potterat, O.; Von Mandach, U.; Simões-Wüst, A.P. Potential of Bryophyllum pinnatum as a detrusor relaxant: An in vitro exploratory study. Planta Med. 2017, 83, 1274–1280.
  54. Barbhuiya, P.A.; Laskar, A.M.; Mazumdar, H.; Dutta, P.; Pathak, M.P.; Dey, B.K.; Sen, S. Ethnomedicinal Practices and Traditional Medicinal Plants of Barak Valley, Assam: A systematic review. J. Pharmacopunct. 2022, 25, 149–185.
  55. Bhandari, R.; Gyawali, S.; Aryal, N.; Gaire, D.; Paudyal, K.; Panta, A.; Panth, P.; Joshi, D.R.; Rokaya, R.K.; Aryal, P.; et al. Evaluation of phytochemical, antioxidant, and memory-enhancing activity of Garuga pinnata Roxb. Bark and Bryophyllum pinnatum (Lam) Oken. leaves. Sci. World J. 2021, 2021, 6649574.
  56. Bhatti, M.; Kamboj, A.; Saluja, A.K.; Jain, U.K. In vitro evaluation and comparison of antioxidant activities of various extracts of leaves and stems of Kalanchoe pinnatum. Int. J. Green Pharm. 2012, 6, 340–347.
  57. Bhavsar, S.; Chandel, D. Cytotoxic and genotoxic effects of Kalanchoe pinnata (Lam.) Pers. fresh leaf juice in the cultured human blood lymphocytes. Drug Chem. Toxicol. 2019, 45, 360–366.
  58. Bopda, O.S.M.; Longo, F.; Bella, T.N.; Edzah, P.M.O.; Taiwe, G.S.; Bilada, D.C.; Tom, E.N.L.; Kamtchouing, P.; Dimo, T. Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats. J. Ethnopharmacol. 2014, 153, 400–407.
  59. Clemen-Pascual, L.M.; Macahig, R.A.S.; Rojas, N.R.L. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicol. Rep. 2021, 9, 22–35.
  60. Coutinho, M.A.S.; Casanova, L.M.; Nascimento, L.B.D.S.; Leal, D.; Palmero, C.; Toma, H.K.; Santos, E.P.; Nasciutti, L.E.; Costa, S.S. Wound healing cream formulated with Kalanchoe pinnata major flavonoid is as effective as the aqueous leaf extract cream in a rat model of excisional wound. Nat. Prod. Res. 2020, 35, 6034–6039.
  61. Cruz, E.A.; Reuter, H.; Martin, N.; Dehzad, N.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B.; Buhl, R.; Stassen, M.; Taube, C. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. Phytomedicine 2012, 19, 115–121.
  62. Cryer, M.; Lane, K.; Greer, M.; Cates, R.; Burt, S.; Andrus, M.; Zou, J.; Rogers, P.; Hansen, M.D.H.; Burgado, J.; et al. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharm. Biol. 2017, 55, 1586–1591.
  63. El Abdellaoui, S.; Destandau, E.; Toribio, A.; Elfakir, C.; Lafosse, M.; Renimel, I.; André, P.; Cancellieri, P.; Landemarre, L. Bioactive molecules in Kalanchoe pinnata leaves: Extraction, purification, and identification. Anal. Bioanal. Chem. 2010, 398, 1329–1338.
  64. Fernandes, J.M.; Ortiz, S.; Tavares, R.P.M.; Mandova, T.; Araújo, E.R.; Andrade, A.W.L.; Michel, S.; Grougnet, R.; Zucolotto, S.M. Bryophyllum pinnatum markers: CPC isolation, simultaneous quantification by a validated UPLC-DAD method and biological evaluations. J. Pharm. Biomed. Anal. 2021, 193, 113682.
  65. Furer, K.; Simões-Wüst, A.P.; von Mandach, U.; Hamburger, M.; Potterat, O. Bryophyllum pinnatum and Related Species Used in Anthroposophic Medicine: Constituents, Pharmacological Activities, and Clinical Efficacy. Planta Med. 2016, 82, 930–941.
  66. Gomes, D.C.O.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B. Effectiveness of the immunomodulatory extract of Kalanchoe pinnata against murine visceral leishmaniasis. Parasitology 2010, 137, 613–618.
  67. Kadam, S.; Madhusoodhanan, V.; Bandgar, A.; Kaushik, K.S. From Treatise to Test: Evaluating Traditional Remedies for Anti-Biofilm Potential. Front. Pharmacol. 2020, 11, 566334.
  68. Kukuia, K.E.K.; Asiedu-Gyekye, I.J.; Woode, E.; Biney, R.P.; Addae, E. Phytotherapy of experimental depression: Kalanchoe integra var. crenata (Andr.) Cuf leaf extract. J. Pharm. Bioallied. Sci. 2015, 7, 26–31.
  69. Leal-Costa, M.V.; Nascimento, L.B.S.; Moreira, N.S.; Reinert, F.; Costa, S.S.; Salgueiro Lage, C.L.; Tavares, E.S. Influence of Blue Light on the Leaf Morphoanatomy of In Vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae). Microsc. Microanal. 2010, 16, 576–582.
  70. Lebedeva, A.A.; Zakharchenko, N.S.; Trubnikova, E.V.; Medvedeva, O.A.; Kuznetsova, T.V.; Masgutova, G.A.; Zylkova, M.V.; Buryanov, Y.I.; Belous, A.S. Bactericide, Immunomodulating, and Wound Healing Properties of Transgenic Kalanchoe pinnata Synergize with Antimicrobial Peptide Cecropin P1 In Vivo. J. Immunol. Res. 2017, 2017, 4645701.
  71. Majaz, A.Q.; Khurshid, M.; Nazim, S. The Miracle Plant (Kalanchoe pinnata): A Phytochemical and Pharmacological Review. Int. J. Res. Ayurveda Pharm. 2011, 2, 1478–1482.
  72. Majaz, A.Q.; Nazim, S.; Afsar, S.; Siraj, S.; Siddik, P.M. Evaluation of Antimicrobial activity of Roots of K. pinnata. Int. J. Pharmacol. Bio. Sci. 2011, 5, 93–96.
  73. Mora-Pérez, A.; Hernández-Medel, M.D.R. Anticonvulsant activity of methanolic extract from Kalanchoe pinnata (Lam.) stems and roots in mice: A comparison to diazepam. Neurología 2016, 31, 161–168.
  74. Mourão, R.H.V.; Santos, F.O.; Franzotti, E.M.; Moreno, M.P.N.; Antoniolli, A.R. Antiinflammatory Activity and Acute Toxicity (LD50) of the Juice of Kalanchoe brasiliensis (Comb.) Leaves Picked Before and During Blooming. Phytother. Res. 1999, 13, 352–354.
  75. Muzitano, M.F.; Bergonzi, M.C.; De Melo, G.O.; Lage, C.L.S.; Bilia, A.R.; Vincieri, F.F.; Rossi-Bergmann, B.; Costa, S.S. Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. J. Ethnopharmacol. 2011, 133, 132–137.
  76. Nascimento, L.B.S.; Leal-Costa, M.V.; Coutinho, M.A.S.; Moreira, N.S.; Lage, C.L.S.; Barbi, N.S.; Costa, S.S.; Tavares, E.S. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light. Photochem. Photobiol. 2013, 89, 391–399.
  77. Nascimento, L.B.S.; Leal-Costa, M.V.; Menezes, E.A.; Lopes, V.R.; Muzitano, M.F.; Costa, S.S.; Tavares, E.S. Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J. Photochem. Photobiol. B Biol. 2015, 148, 73–81.
  78. Nascimento, L.B.S.; Aguiar, P.F.; Leal-Costa, M.V.; Coutinho, M.A.S.; Borsoldi, M.P.G.; Rossi-Bergmann, B.; Tavares, E.S.; Costa, S.S. Optimization of Aqueous Extraction from Kalanchoe pinnata Leaves to Obtain the Highest Content of an Anti-inflammatory Flavonoid Using a Response Surface Model. Phytochem. Anal. 2018, 29, 308–315.
  79. Oufir, M.; Seiler, C.; Gerodetti, M.; Gerber, J.; Fürer, K.; Mennet-von Eiff, M.; Elsas, S.M.; Brenneisen, R.; von Mandach, U.; Hamburger, M.; et al. Quantification of bufadienolides in Bryophyllum pinnatum leaves and manufactured products by UHPLC-ESIMS/MS. Planta Med. 2015, 81, 1190–1197.
  80. Patil, S.B.; Dongare, V.R.; Kulkarni, C.R.; Joglekar, M.M.; Arvindekar, A.U. Antidiabetic activity of Kalanchoe pinnata in streptozotocin-induced diabetic rats by glucose independent insulin secretagogue action. Pharm. Biol. 2013, 51, 1411–1418.
  81. Paul, A.; Chakraborty, N.; Sarkar, A.; Acharya, K.; Ranjan, A.; Chauhan, A.; Srivastava, S.; Singh, A.K.; Rai, A.K.; Mubeen, I.; et al. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BioMed Res. Int. 2013, 2023, 1977602.
  82. Santos, S.; Zurfluh, L.; Mennet, M.; Potterat, O.; von Mandach, U.; Hamburger, M.; Simoes-Wust, A.P. Bryophyllum pinnatum Compounds Inhibit Oxytocin-Induced Signaling Pathways in Human Myometrial Cells. Front. Pharmacol. 2021, 12, 632986.
  83. Yuliani, T.; Dewijanti, I.D.; Banjarnahor, S.D.S. Antidiabetic activity of ethanolic extracts of Kalanchoe pinnata leaves in alloxan induced hyperglycemic rats. Indones. J. Pharm. 2016, 27, 139–144.
  84. Zakharchenko, N.S.; Lebedeva, A.A.; Furs, O.V.; Rukavtsova, E.B.; Schevchuk, T.V.; Rodionov, I.L.; Bur’yanov, Y.I. Producing Marker-Free Kalanchoe Plants Expressing Antimicrobial Peptide Cecropin P1 Gene. Russ. J. Plant Physiol. 2016, 63, 273–282.
  85. Zakharchenko, N.S.; Rukavtsova, E.B.; Shevchuk, T.V.; Furs, O.V.; Pigoleva, S.V.; Lebedeva, A.A.; Chulina, I.A.; Baidakova, L.K.; Bur’yanov, Y.I. The Obtainment and Characteristics of Kalanchoe pinnata L. Plants Expressing the Artificial Gene of the Cecropin P1 Antimicrobial Peptide. Appl. Biochem. Microbiol. 2016, 52, 421–428.
  86. Zakharchenko, N.S.; Belous, A.S.; Biryukova, Y.K.; Medvedeva, O.A.; Belyakova, A.V.; Masgutova, G.A.; Trubnikova, E.V.; Buryanov, Y.I.; Lebedeva, A.A. Immunomodulating and Revascularizing Activity of Kalanchoe pinnata Synergize with Fungicide Activity of Biogenic Peptide Cecropin P1. J. Immunol. Res. 2017, 2017, 3940743.
  87. POWO. Kalanchoe. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. 2023. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30060186-2 (accessed on 6 April 2023).
  88. Kamboj, A.; Saluja, A.K. Bryophyllum pinnatum (Lam.) Kurz: Phytochemical and pharmacological profile: A review. Pharmacogn. Rev. 2009, 3, 364–375.
  89. Lorenzi, H.; Matos, F.J.A. Plantas Medicinais No Brasil: Nativas Exóticas Cultivadas, 2nd ed.; Instituto Plantarum de Estudos da Flora: Nova Odessa, Brazil, 2008; p. 223.
  90. Milad, R.; El-Ahmady, S.; Singab, A.N. Genus Kalanchoe (Crassulaceae): A Review of Its Ethnomedicinal, Botanical, Chemical and Pharmacological Properties. J. Med. Plants 2014, 4, 86–104.
  91. Fernandes, J.M.; Cunha, L.M.; Azevedo, E.P.; Lourenco, E.M.G.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Kalanchoe laciniata and Bryophyllum pinnatum: An updated review about ethnopharmacology, phytochemistry, pharmacology and toxicology. Rev. Bras. Farmacogn. 2019, 29, 529–558.
  92. Herrera, I.; Hernandez, M.J.; Lampo, M.; Nassar, J.M. Plantlet recruitment is the key demographic transition in invasion by Kalanchoe daigremontiana. Popul. Ecol. 2011, 54, 225–237.
  93. Moreira, N.S.; Nascimento, L.B.S.; Leal-Costa, M.V.; Tavares, E.S. Comparative anatomy of leaves of Kalanchoe pinnata and K. crenata in sun and shade conditions, as a support for their identification. Rev. Bras. Farmacogn. 2012, 22, 929–936.
  94. Wild, B.; Wanek, W.; Postl, W.; Richter, A. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana. J. Exp. Bot. 2010, 61, 1375–1383.
  95. Yang, X.; Hu, R.; Yin, H.; Jenkins, J.; Shu, S.; Tang, H.; Liu, D.; Weighill, D.A.; Yim, W.C.; Ha, J.; et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 2017, 8, 1899.
  96. Gotoh, E.; Oiwamoto, K.; Inoue, S.I.; Shimazaki, K.I.; Doi, M. Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana. J. Exp. Bot. 2019, 70, 1367–1374.
  97. Herrando-Moraira, S.; Vitales, D.; Nualart, N.; Gómez-Bellver, C.; Ibáñez, N.; Massó, S.; Cachón-Ferrero, P.; González-Gutiérrez, P.A.; Guillot, D.; Herrera, I.; et al. Global distribution patterns and niche modelling of the invasive Kalanchoe × houghtonii (Crassulaceae). Sci. Rep. 2020, 10, 3143.
  98. Al-Khayri, J.M.; Mahdy, E.M.B.; Taha, H.A.S.; Eldomiaty, A.S.; Abd-Elfattah, M.A.; Latef, A.A.H.A.; Rezk, A.A.; Shehata, W.F.; Almaghasla, M.I.; Shalaby, T.A.; et al. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants 2022, 11, 1722.
  99. García-Sogo, B.; Pineda, B.; Castelblanque, L.; Antón, T.; Medina, M.; Roque, E.; Torresi, C.; Beltrán, J.P.; Moreno, V.; Cañas, L.A. Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep. 2009, 29, 61–77.
  100. Liu, C.; Zhu, C.; Zeng, H.M. Key KdSOC1 gene expression profiles during plantlet morphogenesis under hormone, photoperiod, and drought treatments. Genet. Mol. Res. 2016, 15, 1–14.
  101. Quintero, E.J.; De León, E.G.; Morán-Pinzón, J.; Mero, A.; Leon, E.; Cano, L.P.P. Evaluation of the Leaf Extracts of Kalanchoe Pinnata and Kalanchoe Daigremontiana Chemistry, Antioxidant and Anti-inflammatory Activity. Eur. J. Med. Plants 2021, 32, 45–54.
  102. Casanova, J.M.; Nascimento, L.B.S.; Casanova, L.M.; Leal-Costa, M.V.; Costa, S.S.; Tavares, E.S. Differential Distribution of Flavonoids and Phenolic Acids in Leaves of Kalanchoe delagoensis Ecklon & Zeyher (Crassulaceae). Microsc. Microanal. 2020, 26, 1061–1068.
  103. Brzezicka, E.; Karwowska, K.; Kozieradzka-Kiszkurno, M.; Chernetskyy, M. Leaf micromorphology of Kalanchoë laciniata (Crassulaceae). Mod. Phytomorphology 2015, 8, 49–52.
  104. Smith, G.F.; Figueiredo, E.; Wyk, A.E. Chapter 4-The Genus Kalanchoe (Crassulaceae) in Southern Africa; Academic Press: Cambridge, MA, USA, 2019; pp. 23–28.
  105. Bhavsar, S.; Bhavita, D.; Maitreyi, Z.; Divya, C. A comparative pharmacognostical and phytochemical analysis of Kalanchoe pinnata (Lam.) Pers. leaf extracts. J. Pharmacogn. Phytochem. 2018, 7, 1519–1527.
  106. Chernetskyy, M.; Weryszko-Chmielewska, E. Structure of Kalanchoë pumila Bak. leaves (Crassulaceae DC.). Acta Agrobot. 2008, 61.
More
This entry is offline, you can click here to edit this entry!
Video Production Service